Cite as:

Alexander F. Siegenfeld and Yaneer Bar-Yam, An introduction to complex systems science and its applications, Complexity 2020 (July 27, 2020).


Abstract

The standard assumptions that underlie many conceptual and quantitative frameworks do not hold for many complex physical, biological, and social systems. Complex systems science clarifies when and why such assumptions fail and provides alternative frameworks for understanding the properties of complex systems. This review introduces some of the basic principles of complex systems science, including complexity profiles, the tradeoff between efficiency and adaptability, the necessity of matching the complexity of systems to that of their environments, multiscale analysis, and evolutionary processes. Our focus is on the general properties of systems as opposed to the modeling of specific dynamics; rather than provide a comprehensive review, we pedagogically describe a conceptual and analytic approach for understanding and interacting with the complex systems of our world. This paper assumes only a high school mathematical and scientific background so that it may be accessible to academics in all fields, decision-makers in industry, government, and philanthropy, and anyone who is interested in systems and society.

FIG. 1. Each column contains three examples of systems consisting of the same components (from left to right: molecules, cells, and people) but with different relations between them. Each row contains systems representing a certain kind of relationship between components. For random systems, the behavior of each component is independent from the behavior of all other components. For coherent systems, all components exhibit the same behavior; for example, the behavior (location, orientation, and velocity) of one part of the cannonball completely determines the behavior of the other parts. Correlated systems lie between these two extremes, such that the behaviors of the system’s components do depend on one another, but not so strongly that every component acts in the same way; for example, the shape of one part of a snowflake is correlated with but does not completely determine the shape of the other parts. Implicit in these descriptions is the necessity of specifying the set of behaviors under consideration, as discussed in Section 2.2.