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Long-range interactions and evolutionary stability in a predator-prey system
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Evolving ecosystems often are dominated by spatially local dynamics, but many also include long-range
transport that mixes spatially separated groups. The existence of such mixing may be of critical importance
since research shows spatial separation may be responsible for long-term stability of predator-prey systems.
Complete mixing results in rapid global extinction, while spatial systems achive long term stability due to an
inhomogeneous spatial pattern of local extinctions. We consider the robustness of a generic evolving predator-
prey or host-pathogen model to long-range mixing and find a transition to global extinction at nontrivial values
implying that even if significant mixing already exists, a small amount of additional mixing may cause
extinction. Our results are relevant to the global mixing of species due to human intervention and to global

transport of infectious disease.
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Most traditional approaches to biological modeling repre-
sent evolutionary and ecological systems using quantities av-
eraged over space and time. Such systems are represented as
the frequencies of various genes or types in the population.
In this mean field formulation, the environment experienced
by a particular individual is effectively the average over all
environments [1]. However, real populations are distributed
spatially; organisms experience different local environments,
they consume resources locally, and they travel distances
which are at most a fraction of the size of the habitat of their
species. It has recently become recognized that spatial inho-
mogeneity can be crucial to the dynamics of ecological [2]
and evolutionary [3] systems. In particular, spatial locality is
necessary for stability (the coexistence of species) in a num-
ber of systems [4]. In the well-mixed case, predators become
extinct in evolving predator-prey models [5,6]. (Whether
spatial or well-mixed, these models describe discrete popu-
lations and thus sufficiently depleted populations go extinct,
unlike the conventional Lotka-Volterra model where the con-
tinuum treatment does not allow depletion of prey to result in
extinction.) As in earlier studies [7], evolutionary stability is
defined by persistance over a time that grows exponentially
with the size of the system (a remarkably long time), while
extinction is characterized by systems whose populations ex-
pire over a time that is no greater than linear in the size of the
system (a remarkably short time).

Many real spatially distributed systems, however, though
interacting mostly locally, also have long-range interactions.
In a biological context, long-range interactions can arise, for
example, when individuals can disperse via spores or when
their seeds are transported long distances or through trans-
port by human beings, i.e., the unintentional or intentional
introduction of invasive species from remote locations. In the
limit of many long-range interactions, spatial models change
to the behavior charasteristic of well-mixed systems. We ex-
plore in this paper the degree to which systems with mostly
local interactions are robust to long-range interactions. Re-
cent work on “Small-World” networks [8,9] has investigated
the effect of long-range connections on the connectivity of
natural and artificial networks, and has shown that it takes
only a very small amount of global mixing to make a mostly
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locally interacting system behave as a well-mixed system in
some respects. Since a small amount of mixing is likely in
many cases, this finding makes suspect the relevance of spa-
tial models, and raises the question of how evolutionary sys-
tems that depend on spatial separation are able to persist.

Previous studies of transitions arising from the introduc-
tion of global mixing have considered dynamic models with-
out evolution, such as a spatial prisoner’s dilemma with vol-
unteering [10], a nonevolving host-pathogen model showing
a transition to global oscilations [11], and a model showing a
percolation transition [12]. In this work we focus on evolu-
tionary coexistence in a predator-prey and/or host-pathogen
model in which the dynamics can lead to extinction of the
pathogen and severe depletion and sometimes extinction of
the host as well. This model is of potential relevance to the
ongoing evolution of “emergent” pathogens with human
hosts as well as the evolutionary implications of invasive
species. For the case of rapidly evolving emergent patho-
gens, host evolution in response to the pathogen cannot miti-
gate the extinction due to the short time scale over which
pathogen evolution occurs.

Previous research has considered a variety of aspects of
the evolutionary dynamics of spatial host-pathogen models.
It has been shown that pathogen and host can coexist when
the transmissibility evolves [13], and the mechanisms by
which evolutionary stability and instability occur have been
identified [5,6,14,15]. Other studies have considered the evo-
lution of dispersal distance [16—19]. It has been shown [16]
that when the dispersal distance itself can evolve in a system
exhibiting spatial patterns consisting of spiral waves, this
distance increases by selection and in some cases this may
lead to the extinction of the population.

The spatially extended predator-prey model we use is
chosen because it is simple yet exhibits nontrivial evolution-
ary behavior. In the model, the rate at which predators con-
sume prey evolves; higher rates give a short-term advantage
to predators since they can reproduce faster. However, in a
globally mixed population, a rate that is too high leads to
depletion of prey and hence the extinction of the predator. In
the spatial case, because types are spatially segregated from
each other, the overexploiting types cause their own local
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extinction while the evolutionarily stable type survives.
Thus, the long-term selection favors a sustainable level of
predation. We will study the effect of long-range mixing on
the evolutionary stability of the system, that is, the ability of
predator and prey to coexist.

The model is a probabilistic cellular automaton [5,20],
with possible states 0 (empty), H (prey), and P, (prey being
consumed by predator with reproduction rate 7). At each
time step, prey reproduce into each connected site with prob-
ability g if that site is not yet occupied. A predator P, can
reproduce by colonizing a connected site with probability 7,
if that site has prey. Prey being consumed by predators do
not reproduce. Finally, a local predator population depletes
its prey and hence dies out with probability v, leaving empty
space. Explicit rules are in Ref. [5]. (The model can also be
thought of as a host-pathogen system, with the predators be-
ing pathogens and the prey being hosts [21,7,22]; in these
terms, v describes the virulence of the pathogen and 7 the
transmissibility.) To investigate the evolutionary dynamics of
the system, we add mutations [13,5] that change the repro-
duction rate so that predators with reproduction rate 7 have
offspring at a value 7+t& with probability u. This makes it
possible to study the effect of selection on the predator-prey
dynamics.

Several variations in the model were simulated without
qualitative changes in results, including larger but still local
reproduction neighborhoods and Gaussian distribution of the
change in 7. We do not consider the evolutionary dynamics
of g and v since they would simply evolve to arbitrarily large
and small values, respectively, for inherent biological con-
straints [6].

In a well-mixed (homogeneous and/or mean-field) ap-
proximation [1] of the model [7,14], the reproduction rate 7
monotonically increases [23]. The spatial model, by contrast,
evolves to an evolutionarily stable value of 7. When high
values of 7lead to extinction, 7 does not increase to the point
of extinction; the steady-state value is lower than the extinc-
tion limit. This self-organized survival results from local
rather than global extinctions of overexploiting types and
occurs for the entire region of parameter space where preda-
tor and prey coexist. Figure 1 shows an evolving system at
intervals of 20 generations after it has reached the evolution-
arily stable state, showing patches of prey growing and being
depleted by predators of various types. Mutant, overexploit-
ing strains continually arise but go extinct over many gen-
erations, but without causing the extinction of the entire
population. The selective extinction results from self-
consistent spatial segregation and the local depletion of prey
[5,6]. Thus, selection acts only on long time scales, through
environmental modification and feedback. We have previ-
ously shown using an analytic treatment that the key dynami-
cal behaviors of the model can be accounted for by assuming
a characteristic size of patches [14,15]. This motivates the
discussion below of finite-size and patch-size scaling.

Preliminary to considering nonlocal reproduction, we
characterized the effect of the size of the space on the stabil-
ity of these systems. Coexistence requires a minimum
amount of space. Below a lattice size L,,, the system is un-
stable [Fig. 2(a)] since an overexploiting mutant strain can
grow to become the only strain in the whole space before
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FIG. 1. (Color) Snapshots of the lattice for the evolving
pathogen-host model. Twenty generations elapse between each
frame. Prey populations by themselves are shown as green and prey
being consumed by predators are colored depending on their value
of the predator reproduction rate 7, as shown in the legend. In this
and all subsequent figures, the system has settled to a steady state
value of 7. We use an L X L square lattice with periodic boundary
conditions and a von Neumann neighborhood (north, south, east,
and west neighbors). In this figure, the lattice size L=100, prey
depletion rate v=0.2, and prey reproduction rate g=0.05.

environmental feedback has time to cause its extinction. We
have found that the minimum area for evolutionary stability
Lis is proportional to the average population of a predator
strain summed over the course of its existence [Fig. 2(b)].
This indicates that evolutionary stability occurs when the
space is large enough that nonoverexploiting strains can sur-
vive during an outbreak of an overexploiting mutant.

We introduce long-range dispersal by replacing the lattice
of the model with a Small-World network [8]. We choose
this static connectivity to relate our results to work on net-
work theory, but we also consider dynamic long-range dis-
persal below. To generate the lattice, we begin with a net-
work corresponding to a square lattice in which each site is
connected to its four neighbors, and randomly “rewire” each
link with probability p. Thus, there are 4pL? long-range con-
nections; a regular lattice is a special case with p=0. p=1
corresponds to a well-mixed case [7,14] in which higher-7
predator strains always outcompete lower-7 ones, and, for

TABLE 1. Critical density p, as a function of the model param-
eters, on (a) a Small-World network. (b) for long-range dispersal. 1
indicates stable for all p.

Pe £=0.05 £=0.01 g=0.2

(a)

v=0.1 0.02 0.3 1

v=0.2 0.001 0.02 0.45

v=0.4 0.0001 0.002 0.25
(b)

v=0.1 0.1 0.8 1

v=0.2 0.005 0.2 1

v=0.4 0.001 0.02 0.9
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FIG. 2. (a) Evolutionary stability as a function of lattice size L.
Each point represents the probability p,, that the predator and prey
will coexist for at least 100 000 generations, obtained from 10 runs.
Any time substantially longer than a single generation will give
similar results as there is a sharp transition between populations that
survive for times that are exponential in system size and those that
are not more than linear. There is a transition at a size L, For the
left curve (circles), the prey reproduction rate g=0.2. For the right
curve (X symbols), g=0.05. The depletion rate v=0.2. (b) The
minimum lattice size for evolutionary stability L, as a function of
the average total population S of an overexploiting strain over the
course of its existence. Results are for all combinations of v
=0.1,0.2,0.4 and g=0.05,0.1,0.2. The line shows the fit L,
=0.15+30 (r2=0.97).

most model parameters, become extinct. Figure 3 shows the
behavior of the system as p is increased from O as measured
by the probability of coexistence over a long-time scale
(100,000 generations) as a function of p. There is a sharp
transition to extinction at a value p. which depends on the
parameters (Table I). This critical density is plotted in Fig.
4(a) as a function of the characteristic spatial scale of the
system: the area of a contiguous host patch in which a patho-
gen is located. For a wide range of parameters, a single func-
tional dependence is found—a power law. When patches are
larger in the absence of long-range links, the system is more
sensitive to the addition of links [Table I(a)]. The results we
found are quite different from studies of Small-World net-
works that focus on connectivity. Similar to previous studies
of nonevolving systems [ 10-12], we find a sharp transition at
a value of p=p, that depends on model parameters. Figure
3(a) shows that the system is robust to the introduction of
small amounts of mixing. Indeed, p. can be quite high; for
example, for g=0.2, the system is still stable when the prob-
ability of long-range dispersal is 0.45.

While the stability of the system does not follow the be-
havior of connectivity in Small-World networks, a relation-
ship can still be made to this area of research. Studies have
shown [24-28] that the Small-World phenomenon of short-
ened path lengths occurs only between nodes that are more
than a certain crossover distance &(p) from each other on the
underlying lattice before addition of long-range links. Below
this distance, the path length scales linearly in the distance
on the underlying lattice. We have found that the crossover
distance at the critical density &(p,) is approximately linear
in the average diameter v’aj of patches in the evolutionary
model [Fig. 4(b)], and that &(p,) is, in general, larger than
Va,. This can be understood if we interpret &(p) as the scale
below which the system has spatial behavior and is not
strongly affected by the long-range mixing. If &(p) is smaller
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FIG. 3. Evolutionary stability on a two-dimensional Small-
World network. (a) The probability p,, that predator and prey coex-
ist for 100 000 generations, as a function of p, averaged over 11
runs, for g=0.05 (circles) and g=0.2 (squares) (depletion rate v
=0.2, lattice size L=250). Note the logarithmic scale of p. We iden-
tify the point of transition to instability p. as the density such that
for all p>p., p.,<1/2. For comparison, the average path length
I(p) between nodes is plotted as a fraction of /(0) (dashed line, same
scale). For comparison, the dotted line shows [(1)/1(0), that is, the
value for a random network. (b) The evolutionarily stable reproduc-
tion rate 7, as a function of p on a two-dimensional (2D) Small-
World network, averaged over the last 200 generations of 10 runs of
100 000 generations. 7, is also plotted for values of p for which the
predators go extinct (shaded region); the average of the last 200
generations before extinction is plotted. (c) As (b), but for g=0.05.

than the patch size, then the addition of long-range links
reduces the effective size of the system below the size of a
single patch on average, leading to extinction.

For many biological scenarios, such as airborne dispersal
in pathogens, it is more realistic that only the predator dis-
perses long distances, and disperses to a dynamically chosen
site instead of over a fixed set of long-range connections. We
model this as follows: p describes the probability that a
predator will have a chance to disperse to a randomly chosen
site, and occupies the site with probability 7 if that site con-
tains a prey population. This leads to similar results, al-
though the value of p, changes [Table I(b)].

The transition to instability can be studied by examining
the average reproduction rate 7,, of the predators in the long-
time steady-state limit. Increasing long-range dispersal in-
creases 7,, as seen in Figs. 3(b) and 3(c). This is consistent
with the idea that exploiting strains are increasingly able to
escape local extinction through long-range dispersal.

The relevance of the spatial scale of patch size in the
absence of long-range links to the critical density of long-
range dispersal can be readily understood. As patch size in-
creases, a predator strain that overexploits a patch has more
opportunities to maintain itself by invading a distant patch
before local extinction, and so requires a lower rate of long-
range dispersal. Thus, the larger the scale of spatial structure
in the distribution of predator and prey, the smaller the den-
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FIG. 4. (a) The critical density p. as a function of the average
patch area a,,. The line is the least-squares fit pc~a;1‘5 (r7=0.94).
(b) The length scale of the crossover between “small-world” and
“large-world” scaling of distances at the critical density p,, as a
function of the average patch diameter Va, ie., &p.)
=in(4mp L*)/2\7p,. The line shows the fit &(p,)=2.1Va, (r*
=0.97). Please note the logarithmic horizontal scale.

sity of long-range links needed to destabilize the system.
Moreover, the robustness of the predator-prey system is af-
fected by the time scale at which selection acts against an
overexploiting strain [5]. When such strains are successful
for a large number of generations before going extinct, they
have more chances to disperse to a distant patch before they
locally deplete their prey.

Our results suggest that spatially extended models are rel-
evant to studies of systems with long-range interactions, as
long as the density of such interactions is not too high. There
are many other processes in spatially extended biological
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systems that operate on particular length scales, and the char-
acteristic behavior of such systems may also be robust to
limited long-range mixing. Examples include the formation
of patterns in ecosystems by local activation and long-range
inhibition [29] and pattern formation in excitable media,
such as spiral waves [30].

The transition from spatial to homogeneous behavior can,
however, be sudden and can occur even in systems that al-
ready have a significant density of long-range interactions.
Thus, one should not conclude that a system that already has
long-range mixing will be stable to additional mixing.

According to our simulations, when global mixing in-
creases beyond the critical density, overexploiting predator
strains escape local extinction and replace sustainable strains
globally, leading to their own extinction and decimation of
the prey population. Our results apply directly to simple evo-
lutionary models, but similar considerations apply to the phe-
nomena of emergent diseases (such as Ebola, SARS [31], and
Avian Flu [32]), most of which evolve on short time scales,
and may also apply to invasive species, which have been of
widespread ecological concern [33,34]. While the demon-
stration that some long-range connections do not always
destablize evolving systems provides some reassurance, the
danger from additional connections suggests that a system
may cross the transition and become unstable with little
warning as global mixing increases in frequency.

Our results suggest the need for concerted response, in-
cluding medical developments, and, perhaps, societal
changes. Due to increasing global transportation, human be-
ings may cross the transition without much warning and suf-
fer large pandemics unless preventive actions are taken that
either limit global transportation or its impact.
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