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Abstract

We discuss the role of scale dependence of entropy/complexity and its relationship to component

interdependence. The complexity as a function of scale of observation is expressed in terms of

subsystem entropies for a system having a description in terms of variables that have the same

a-priori scale. The sum of the complexity over all scales is the same for any system with the

same number of underlying degrees of freedom (variables), even though the complexity at specific

scales differs due to the organization / interdependence of these degrees of freedom. This reflects a

tradeoff of complexity at different scales of observation. Calculation of this complexity for a simple

frustrated system reveals that it is possible for the complexity to be negative. This is consistent

with the possibility that observations of a system that include some errors may actually cause, on

average, negative knowledge, i.e. incorrect expectations.
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The study of the relationship of information and physics has a long history. Maxwell’s

demon has provided much of the impetus, as has the understanding of computation as a

physical process [1-9]. More recently this interest has focused on quantum information and

computation. In this paper we will consider the role of interdependence of the components of

a physical system and the relationship of interdependence to microscopic and macroscopic

degrees of freedom. Missing from the conventional discussions of information in physics

is the recognition that information describing the macroscopic structure and dynamics of

non-equilibrium systems, must be related to changes in microscopic entropy.

Not only are non-equilibrium states related to a reduction in microscopic entropy (which

follows directly from the Second law of Thermodynamics) but, more significantly, the degree

to which macroscopic behavior occurs must, in some sense, be directly related to the degree of

reduction in the entropy. This statement can also be understood to follow from the discussion

in Ref. 10 that macroscopically observable degrees of freedom represent aggregates of many

microscopic variables. Macroscopically relevant aggregates arise when their internal/relative

degrees of freedom are constrained, creating coherent behaviors that are observable on a large

scale. To develop a formalism that can address this topic we go beyond the understanding

of pair correlations in physical systems, the usual tool of statistical physics, to consider

higher order correlations that are characteristic of coherent behaviors: many particles that

are coupled as described by k-fold correlations, where k may be a macroscopic number.

The use of microscopic correlations to obtain the macroscopic entropy for an equilibrium

system was shown by Lindgren [11]. Our objective is to relate the structure of the state

space of the system (i.e. measures of the volume of the state space, the entropy, as well

as its geometrical structure) to the dependencies between microscopic coordinates. These

measures of state space structure are relevant for both equilibrium and non-equilibrium

systems. The structure of the state space can be characterized in part by considering its

volume at different degrees of resolution (scale). The large-scale structure of the state space

is related to macroscopic degrees of freedom (especially for non-equilibrium systems), while

the fine scale structure is related to microscopic degrees of freedom.

The logic of this presentation is as follows. We begin by considering the conventional

definition of entropy/information as a measure of the state space volume of a system. Then

we consider the dependence of this quantity on the scale of observation. Larger scales

correspond to reduced precision in observation, i.e. observation only of collective behaviors
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of multiple components that carry redundant information. Using a detailed consideration

of the algebraic properties of the information for multiple variables we provide explicit

expressions for the amount of information at each particular level of redundancy (scale). We

compare this scale dependent function in its entirety for different systems. This function,

”the complexity profile” [10] can be viewed as the scale dependent complexity, synonymous

with the scale dependent information, entropy or variety. We arrive at the conclusion that

this function can characterize the structure of a system, and in particular it demonstrates

that the existence of larger scale parameters (degrees of freedom) directly corresponds to

a loss of microscopic degrees of freedom through aggregation. This is shown by deriving a

sum rule that constrains the sum over complexity (amount of information) in all degrees of

freedom of the system. This fundamental, if simple, observation of a tradeoff between fine

and large-scale degrees of freedom has not yet been made in the literature considering the

role of information in physics.

In the process of this discussion we develop a formalism based upon information theory

that can treat all high order correlations of the components of a system. Indeed capturing

these correlations is what enables us to describe the tradeoff between fine and large-scale

degrees of freedom through a sum rule. This sum rule formalizes the tradeoff in state space

at different scales. The formalism and the sum rule together constitute a new treatment of

the relationship between interdependence of components and measures of state space. We

illustrate the formalism and its implications by applying it to several simple models. Detailed

applications to models of specific complex systems are deferred to future publications.

The discussion of information in physical systems in this paper can be conceptually linked

to many quantitatively oriented discussions of complexity, since they are often related to

information theory. The word ”complexity” is used in the literature in two ways. The first is

as a quality whose attributes (to be identified) characterize all complex systems. The second

is as a quantitative measure, a single number that characterizes a system, thus capturing

the notion that some systems (mathematical or physical) are more or less complex than

others. The various quantitative approaches that have been taken often relate complexity to

mathematical formulations of thermodynamic or statistical entropy and information [12-33].

The notion of descriptive complexity, one of the threads in the discussion of complexity

suggests that the complexity of a system is related to the length of its shortest description.

Since the length of a description is in some sense the minimal information, the basis of most
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discussions of descriptive complexity is information theory[13], augmented by algorithmic

complexity[16-18], which considers the possibility of using a shorter description and an al-

gorithm for expanding it. The use of algorithmic complexity indicates the importance of

computation in the study of the properties of complex systems. Excluding this algorithmic

aspect of most discussions, the approach of information theory would be based upon a discus-

sion of state space volume. In considering the behavior of the state space volume at different

scales of observation, and the behavior of microscopic and macroscopic degrees of freedom,

we are therefore considering how information behaves as a function of scale. Missing from

these other treatments is a discussion of the interdependence of components and specifically

any formalism that can consider high order correlations between components of the system.

As shown below, without a treatment of these high order correlations, an understanding

of the relationship of microscopic and macroscopic (or intermediate scale) observations of

a system is not possible. Thus in this paper, rather than approach the problem from the

point of view of algorithmic complexity, we directly consider how information in physical

observations is related to a multiscale approach that treats multiple redundancy, scale and

interdependence.

There are two aspects of the concept of complexity that appear to cause the most dif-

ficulty in formal discussions. The first problem is that there is a correspondence between

information and entropy that is counter to common intuition. The second problem is the

existence of observer dependence, suggesting arbitrariness in the definition. The multiscale

approach developed in this paper suggests that these issues can be resolved by considering

the scale dependence of observation rather than observation at a particular scale, and es-

pecially not just the microscopic scale. This leads to the characterization of a system by a

scale dependent complexity rather than a single number. This is not a new concept but it

has received relatively little attention in recent years and deserves to be reconsidered. In the

following paragraphs we introduce the two conceptual difficulties as additional motivation

for the multiscale formalism.

The conventional definition of the physical entropy S of a system with a particular

macrostate (e.g. energy, composition, volume, (U, N, V ) ) in statistical physics and that

of information H(z), the average information in a set of messages (descriptions) whose

probabilities Pz(s) map onto the ensemble of the microstates of the physical system (z is a

label for the set of possible messages and the probability over this set, s is a particular value
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from the set; see the discussion of notation in Ref. 10, Section 1.8.3) can be related by:

H(z) = S(U, N, V )/k ln(2) = −
∑

s

Pz(s) log2 Pz(s) (1)

The sum over s indicates a sum over the finite or infinite set of messages, where the

messages are in one-to-one correspondence with the states of the system and therefore can

be considered as labels or descriptions of each state of the system. Equation (1) allows

the entropy to be generalized to treat non-equilibrium systems, as long as we assume a

well-defined ensemble probability distribution, Pz(s). We we will further assume that the

messages can be written using binary variables s = {si}i=1,...,n, si = ±1, that these binary

variables correspond to the components of the system, and are all of the same scale, although

they may be interdependent. The interdependence of these components is captured by the

probability of the system state Pz(s) = Pz(s1, ..., sn), which does not generally factor into

probabilities of the individual binary variables. The variables si considered individually have

the probability Pzi
(si), which we can for simplicity assume to be equal for the two possible

values so that the information H(zi) is 1.

The conceptual difficulty with the relationship given by Eq. 1 is that equilibrium systems,

which maximize entropy, are not the systems we normally identify as most complex. The

equilibrium form of a human being is a murky liquid—it is the most disordered / random

system without visible structure or dynamics (even through its microscopic description re-

quires the most information). This difficulty has led to definitions of complexity that give

a low value for completely disordered systems, and a higher value for systems away from

equilibrium. Probably the earliest and most discussed variant on information which can be

used to characterize the non-equilibrium character of a system is Schroedinger’s concept of

negentropy[12] which, while originally defined as the negative of the entropy, can be better

understood as the difference between the equilibrium entropy and the entropy of the system,

when it is in a non-equilibrium but well defined ensemble Pz(s). Negentropy, therefore, mea-

sures the entropic deviation of the system from the equilibrium state. Since this modified

definition amounts to the addition of a constant offset (the equilibrium entropy) for all pos-

sible non-equilibrium macrostates of a particular system, it changes only in a non-essential

way the concept defined by Schroedinger. The negentropy defined in this way is high for

systems that are out of equilibrium. Its relationship with the multiscale formalism will be
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discussed below.

The second conceptual problem arises from a concern with the apparent dependence of

description length on the observer. In contrast to the unique definition of the entropy of

a physical system, the observer dependence of physical quantities (e.g. kinematic ones) is

well-known and the objective of theory is relating what different observers report. In light

of this perspective, it should not be surprising that the complexity of a system may be

observer dependent. We will argue that rather than a single number for characterizing the

complexity, at the very least, a scale dependent complexity is needed, i.e. the complexity

as reported by a sequence of observers whose observations of the system are at different

scales. This scale dependence reflects the observer’s ability to distinguish details of the

system. All observers observe the same scope, i.e. the system in its entirety. Larger scale

observers, however, see only redundant information. The concept of a scale dependent

entropy dates back to the ε-entropy of Kolmogorov[15], which is similar to Shannon noisy-

channel information theory[13]. The study of the ε-entropy has been largely limited to the

fine scale limit to describe the Kolmogorov-Sinai dynamical systems entropy rate[15,34].

There are several more recent works that have explored the scale dependence of entropy in

specific cases[10,35-38].

The expressions we will give for the scale dependent entropy in terms of component

interdependence can be related to an intuitive notion of complexity without either of the

conceptual difficulties discussed above. Underlying the resolution of the conceptual problems

is the sum rule we will prove that reflects a tradeoff between fine scale and large-scale

complexity for systems with different probability distributions over the same underlying

degrees of freedom. This sum rule has widespread relevance to our understanding of complex

systems.

The multiscale representation is written by considering the level of redundancy of speci-

fication of the information by the elements. The amount of information at each scale is not

an integer, but the scale is integral and ranges from 1 to n. The amount of information that

is shared by at least k variables is the complexity C(k), we also define D(k), the information

that has a redundancy of k, but not higher. D(k) partitions the information disjointly and

C(k) =
n

∑

k′=k

D(k′). (2)
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The conventional entropy is the fine scale complexity H(z) = C(1).

We can obtain an explicit expression for multiscale complexity in terms of the probability

distribution over the state space from a consideration of the algebraic properties of the

information. After an involved derivation, we obtain an explicit expression for the scale

dependent information in terms of the sum over the information in all subsets of a particular

size. The derivation requires ensuring that a proper count is made of the different levels of

redundancy of information. In general, if we consider the information present in a particular

subset of the system, this will overlap the information of other subsets of the system. The

degree to which this overlap occurs (number of redundancies) depends on the multiplicity of

the underlying dependencies of the variables. In order to obtain just the information in the

system that has at least a particular redundancy and not that with less, we determine the

necessary combination of the possible sums over the information in subsets of the system.

A careful treatment of the combinatorics of k-fold redundancy for all k is necessary. Rather

than provide this derivation here we will prove below that our derived form is the only

possible expression. The result is:

C(k) =
k−1
∑

j=0

(−1)k−j+1

(

n − j − 1

k − j − 1

)

Q(n − j) (3)

D(k) =
k

∑

j=0

(−1)k−j+1

(

n − j

k − j

)

Q(n − j), (4)

where

Q(n − j) =
∑

{i1,...,ij}

H(z − {zi1 , ..., zij}) (5)

= −
∑

{i1,...,ij}

∑

s

Pz(s1, ..., sn) log2

∑

{s′i1
,...,s′ij

}

Pz(s1, . . . , s
′
iα, . . . , sn)

is the sum over subspace entropies, with n − j components, i.e. the information excluding

sets of j binary variables from the n total number of binary variables. In the notation

used the subtraction z − {zi1 , ..., zij} indicates set subtraction, i.e. omission from the set of

variables considered. The sum over {ii, ..., ij} implies a sum over all distinct subsets of j

variables out of the entire set of n variables. We note that these are new expressions that

have not appeared in the literature and provide an explicit form for the information in k-fold

dependencies for any system described by a probability distribution over the ensemble. [39]

7



These expressions can be concretized by considering the behavior of a system that par-

titions into subsets Θα each of which consists of |Θα| completely dependent variables, i.e.

there are only two possible states of each subset, a binary degree of freedom. The redun-

dancy of information inherent in the dependency of the variables implies that the scale of

the degree of freedom is equal to the number of variables in the subset. Specifically we

consider the partition

n =
∑

α

|Θα| =
∑

q

nqq (6)

where nq is the number of subsets consisting of q completely interdependent variables, i.e.

Pz(s1, ..., sn) =
∏

i,j∈Θα

δ(si, sj) (7)

(while this expression indicates variables of a subset all adopt the same orientation, it is

only necessary that the choice of one variable sets the orientation of all other variables of

the set) and for this simple case we have the result (by direct substitution):

D(k) = nk (8)

this means that D(k) counts the number of distinct degrees of freedom that are k-fold

redundant, which in this case is the same as the number of partitions with k elements.

To prove the results in Eq. (3) and (4) we note the following must hold for the correct

expressions: (a) the expressions must be symmetric in all subsets of the variables of the

same size (this includes the case of single variables), (b) they must satisfy Eq. (8) for the

example chosen. This proves the correctness of the formulas given in Eq. (3) and (4), since

by direct algebraic inversion of Eq. (4) [40], D(k) is the only function of average subsystem

entropies with property (b).

For the case specified by Eq. (8), there is a simple relationship of the multiscale com-

plexity with robustness to noise. In the presence of noise that is independent for each

variable, the probability of observer error is given by the likelihood that more than half of

the redundant variables are incorrect, which for k completely correlated variables is

perr(k) =

k/2
∑

m=0

(

1 − 1

2
δ (m, k/2)

)(

k

m

)

(1 − r)m r(k−m) (9)
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∼ 1

2

(

1 − erf
(√

2k (1/2 − r)
))

,

where r is the probability of a single variable error, and the asymptotic expression is for

large k.

We can obtain additional intuitive results that generalize Eq (8) by considering a system

that partitions into subsets. First consider partitions that are independent of each other

but are not as simply constrained within. For such a system that partitions into several

subsets (clusters), each of which is interdependent, but with no dependency between them,

the complexities of subgroups add. If we have subsets of variables indexed by α, we have

C(k) =
∑

α

Cα(k) (10)

where Cα(k) is the kth entropy of the α th subset. This generalizes the extensivity of the

entropy and is a first step toward considering the topic of subdivision and hierarchy.[10

Chap. 2,41-43] We can also consider the possibility of subdivisions that are exact replicas

(i.e. multiple copies that have the same state) in which case it can be seen that:

C(k) = C1(bk/gc) (11)

where C1 is the complexity of one subdivision, and g is the number of copies. This means

that the scale is multiplied, while keeping the same value of the complexity. We see that for

the case of completely dependent or independent variables, the definition of the complexity

as a function of scale provides intuitive results.

It is now possible to describe the relationship between interdependence and the scale of

degrees of freedom. This relationship is captured by a sum rule. Several qualitative and

quantitative applications of such a sum rule have been discussed previously[10,38], however

this formal statement is presented here for the first time. The sum rule is proven by direct

substitution of the expressions in Eq. (3) or (4), and can be written as:

∑

k

C(k) =
∑

k

kD(k) = Q(1) =
∑

i

H(zi) (12)

where the final expression is equal to n for equal probabilities for the case of the binary

variables. A conceptual illustration of the sum rule is provided in figure 1. For a class of

systems that have the same degrees of freedom, but different correlations between them,
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(a)

(b)

(c)

k

C(k)

FIG. 1: Schematic illustration of the sum rule for entropy/complexity C(k) (vertical axis) as a

function of scale, k (horizontal axis, increasing to the right). A system with the highest possible

fine scale complexity corresponds to a system with independent / random degrees of freedom (curve

a). When all degrees of freedom are coherent the system has a behavior at the largest scale, but

the same low value of complexity at all finer scales (curve b). Intuitively, complex non-equilibrium

systems (curve c) have a much higher complexity than either random or coherent systems, except at

the finest scale for random systems and except a small but slightly higher complexity for coherent

systems at the largest scales. The area under all curves is the same for systems with the same

underlying degrees of freedom.

the sum rule reflects a tradeoff between complexity at different scales. When parts of a

system are independent, they do not provide redundant information and cannot be visible

at a large-scale. Independence indicates a large amount of information at a fine scale, while

dependence indicates information at a larger scale. This tradeoff alleviates the conceptual

difficulty with the conventional definition of entropy and complexity.

It is useful to compare the scale dependent complexity with the concept of negentropy.

Adding to the usual definition of negentropy, the entropy of the equilibrium system (as
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discussed previously), and assuming that the equilibrium entropy is given by independent

binary variables, the negentropy can be seen to be

∑

i

H(zi) − H(z) =
n

∑

k=2

C(k) (13)

which includes all of the larger scale complexity without distinguishing its scale. A reason to

consider the scale dependent complexity in its entirety is that we can have correlations be-

tween pairs of variables of the system (microscopic correlations) that give a high negentropy,

without any large-scale behavior, i.e. observable degrees of freedom.

The above expressions can be made more intuitive by considering the case of three vari-

ables. In this case we have:

C(1) = H(z)

C(2) =
∑

{i,j}

H(zi, zj) − 2H(z) (14)

C(3) =
∑

H(zi) −
∑

{i,j}

H(zi, zj) + H(z) .

We can illustrate the multiscale complexity for three elements using a Venn diagram

(figure 2), which shows the information overlap between these elements. The area of the

entire diagram is the total entropy H(z) = H(z1, z2, z3). The area of each circle is H(zi). The

intersection of a pair of circles is the mutual information I(zi; zj) = H(zi, zj)−H(zi)−H(zj),

which corresponds to the information that can be learned from zi about zj or vice versa,

or the information that is available to an observer from either zi or zj . The three pairwise

overlapping regions also overlap in the region labeled D(3) in the figure. This might be

given the notation I(z1; z2; z3) and called the mutual information of three variables (with

caveats given below). We identify the regions D(1), D(2), and D(3) as the singly, double,

and triply redundant regions respectively. Expressions in equation (8) and the sum rule can

be verified graphically, or the analogous expressions from equation (5) for D.

To work out a particular example, we consider the three binary variables as binary (Ising

model) spins interacting through a magnetic interaction J to give the probability:

P (s) = e
J

P

i,j

sisj

/

∑

s

e
J

P

i,j

sisj

(15)
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D(1)

D(2)

 D(3)

H(s1)

H(s2)

H(s3)

FIG. 2: Venn-type diagram illustrating the information and redundancy of the information in a

system with three variables.

We evaluate

H(z) = 6J(e−J − e3J )/Z ln(2) + log2(Z)

∑

{i,j}

H(zi, zj) = 6(2e−J log2(2e
−J) + (e−J + e3J ) log2(e

−J + e3J))/z + 3 log2(Z) (16)

∑

i

H(zi) = 3

where

Z = 2(3e−J + e3J ). (17)

The results for C(k) from equation 3 are plotted in figure 3 as a function of J . For positive

J the spin alignment causes the increase in C(2) and C(3) with the information overlap

reaching 1. For negative J, the spins are frustrated in trying to antialign leading ultimately

to six possible states C(1) = log2(6).

What is interesting is the behavior of C(3), which becomes negative for negative J , with

a limiting value of
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C(1)

C(2)
C(3)

J

C(2)

-1 0 1 2

-1

-0.5

0.5

1

1.5

2

2.5

3

C(3)

FIG. 3: Plot of the amount of information C(k) observable at each scale k as a function of the

interaction strength J between three spins.

C(3) → 3 − log2(54) + log2(6) ≈ −0.169925 . (18)

This is not consistent with our normal understanding of the Venn diagram in figure 2.

However, the Venn diagram is only a visual aid, and is not a formally valid representation

of information theory. Indeed, the negative value of C(3) a counter example. We note that

the average mutual information of two variables must always be positive, but the mutual

information that results from a single message may be negative. The case we have here is

different because it is the average information rather than the information in a single message

that is negative, this can occur when we consider the mutual information of three variables

[44]. The meaning of a negative mutual information can be understood from the example we

are considering here. Its origin is the incompatibility of the interactions that try to anti-align

any pair of the three spins, technically known as frustration. Specifically, if we ask what

does the state of spin 1 inform us about the state of spin 3, we learn that it is likely to be

opposite. If, however, we ask, what does spin 1 inform us about the state of spin 2, and what

does the state of spin 2 tell us about the state of spin 3, we will discover that the state of spin

13



3 is likely to be the same as spin 1. This conflicting information leads to the negative value

of C(3). More generally, the negative large-scale entropy reflects the possibility that partial

information gained about a system from messages that contain errors may be misleading,

i.e. this is disinformation resulting from partial knowledge. The negative value of C(3), also

implies that the multiscale complexity is not always a monotonically decreasing function, as

has been stated elsewhere[10].

As a step towards discussing dynamics, consider a Markov chain with transition matrix

T where the possible states at a particular time are assumed to be of a single scale (but

higher scales arise from interplay between times)

pzj−1|zj(sj) =
∑

sj−1

T (sj|sj−1)pzj−1(sj−1) . (19)

We obtain expressions for C(k) per time step in terms of the conditional information along

the chain (H(z′|z) is the information in s′ given s taken from the probability distribution

Pz(s)):

C(k) = H(zk|z0) − H(zk−1|z0), (20)

H(zk|z0) = −
∑

s0,sk

pz0(s0)T k(sk|s0) log2(T
k(sk|s0)) . (21)

The expression for C(1) reduces to the standard entropy of a Markov chain, and C(k) is

always positive. The sum rule is given by:

∑

k

C(k) = lim
k→∞

H(zk|z0) = H(z0) , (22)

consistent with equation (12). For the more specific case of a single binary variable with

transition matrix:





(1 + f)/2 (1 − f)/2

(1 − f)/2 (1 + f)/2



 , (23)

we have

H(zk|z0) = h((1 + fk)
/

2) (24)
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where

h(p) = −p log2 p − (1 − p) log2(1 − p) (25)

showing the role of the eigenvalues of the transition matrix (1, f) in determining the multi-

scale complexity. If the information transferred along the chain was assumed to be retained

from step to step in a random way, the result would be C(k) = h(p) (1 − h(p))k−1, so

the difference between this expression and the equations above reflects “correlations” in the

propagation of information along the Markov chain.

The above treatment considered binary variables, but can be generalized. To generalize

the treatment to apply also to continuum variables, such as position x of a particle, we begin

using a simplified approach that considers the information associated with a single variable,

even if that variable is a real number, to be at a single scale. In this case, the concept

of scale becomes solely associated with numbers of particles that are behaviorally related,

rather than the distance a particular particle travels. While this violates some aspects of

intuition, it enables a direct analysis of a variety of physical systems in which particles are the

underlying physical entity. In particular, all of the above expressions for C(k) and D(k) apply

to multiparticle systems with the interpretation of si as the particle coordinate(s) and H(zi)

as the information needed to specify each coordinate. The simplest non-trivial case is C(k)

for an ideal gas of indistinguishable particles. While it might seem that the independence

of the particles would lead to a non-zero C(k) only for k = 0, indistinguishability is an

implicit interdependence. Since the entropy of any subset of j particles has the form S(j) =

j kB ln(v/j), where v is temperature dependent and proportional to the volume, we have

C(k) =

k−1
∑

j=0

(−1)k−j+1

(

n − j − 1

k − j − 1

)(

n

j

)

(n − j) log2(v/n − j) . (26)

C(k) for k > 0 depends only on n. A plot is shown in Fig. 4. A more complete treatment

of continuum variables would also consider that the information about a single real number

does not have a single scale, but rather has multiple scales associated with smaller and larger

variations in the position variable x. This separation of scales is, in a sense, orthogonal

to the issue of distinguishability described above. The total amount of information at

all scales, appears in the formalism as C(1) which can be inferred from the usual result

C(1) = Log(L/d) where L is the maximum variation and d is the finest observable precision.
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FIG. 4: Plot of C(k) for a gas of N = 100 indistinguishable particles. The line is the curve

N/(k − 1).

A more complete discussion of the scale dependence of continuum variables will be given

elsewhere.

The technical results reported thus far may not provide sufficient intuitive understanding

of the nature of this formal framework. The central idea is to consider the collective motions

of a system and the relationship of such collective motions to the dependencies that exist

between smaller scale degrees of freedom. As an aid to communicating the broad relevance

of this concept, it may be helpful to apply this framework to an example of a complex

system. Consider the comparison of the multiscale complexity of two systems, the first is a

human being, the second is a collection of biological cells. We consider the human being to

be confined to a single large room, the collection of cells, e.g. microbes, to be confined to

a pond of the same volume as the room. As a first approximation, we consider as variables

describing the system the set of possible locations of the cells of the person, and the set

of possible locations of the microbes. The multiscale complexity of the locations of the

microbes might be first approximated as randomly located at any location in the volume

available. The cells of the person are similarly randomly located anywhere in the room.

16



The primary difference being that the location of the cells of the person must all be near

the same location at any particular time, while those of the microbes need not be. This

statement might be described by correlations between positions of the cells, the pairwise

distribution, but such a representation does not capture the many possible dependencies

that might exist between the variables. In the formalism developed in this paper, we use

the N -fold correlation of all of the positions of the cells to capture their mutual dependency.

Indeed, the multiscale complexity of these two systems can be simply characterized. For

the human being at the simplest level of approximation it is C(k) = H(x) for k ≤ N , and

zero otherwise; and D(k) = H(x) for k = N , and zero otherwise. For the microbes it is

C(k) = NH(x) for k = 1, and zero otherwise; and in this case D(k) is equal to C(k).

If we relax the simplest approximations used in this analysis and consider the possibility

of interactions between microbes, or freedom of motion of parts of the human being with

respect to other parts, this would give rise to corrections to the multiscale complexity. All

such corrections reflect the dependence / independence of the degrees of freedom of the

system. The formal result contained in Eq. (3) and Eq. (11) provides proof that a tradeoff

between fine-scale and large-scale degrees of freedom is preserved no matter how realistic a

model is used for the discussion of biological (or other complex) systems.

Oftentimes, complex systems are considered to be systems that have behaviors on mul-

tiple scales. This is frequently captured conceptually by self-similar geometrical fractals

and more general scaling behaviors [45]. For the purpose of information theory, a specific

geometric fractal has no information aside from its generating algorithm. However, we can

consider various stochastic fractal models that have increasing information at finer scales.

For simplicity, we can consider stochastic generalizations of conventional geometric fractals

such as Cantor’s set and the Sierpinski gasket. For Cantor’s set, recursively defined as the

omission of the middle third of remaining line segments starting from the segment [0, 1], we

define a stochastic fractal by defining s(x), a binary variable located at a finite but large

number N of evenly spaced locations x along the unit interval [0, 1], through assigning re-

cursively the middle third of the remaining intervals with a probability of 1/2 to the value

1, and otherwise zero. The resulting multiscale complexity is given by D(N/3m) = 2m−1 ,

for m = 1, 2, 3, .... , so that C(k) = 2b1+log3(N/k)c − 1. This gives the approximate expression

log C(k) ≈ d(log(N) − log(k)), where d is the box-counting dimension d = log(2)/ log(3).

Similarly, for the Sierpinski gasket, we define the value of s(x, y), a binary variable located at
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one of a finite but large number A of locations uniformly distributed in a triangle, recursively

with a probability of 1/2 to the value 1 in the middle (upside-down) triangle of the remaining

unselected triangles partitioned into four triangles. This gives the value D(A/4m) = 3m−1.

This gives the result C(k) = 3b1+log4(N/k)c − 1, or

log C(k) ≈ (d/d0)(log(N) − log(k)) (27)

where d is the fractal dimension d = log(3)/ log(2), and d0 is the embedding dimension

d0 = 2. The power-law result in Eq. (20) is quite general as can be seen by considering a

d0 dimensional body and recursively partitioning it into W parts, of which X are assigned

the value 0 or 1 with probability 1/2 and the remainder are subject to the next level of

recursion. The box-counting dimension is d = d0 log(X)/ log(W ) and the above expression

gives C(k). The power law behavior of the complexity of stochastic fractals is consistent

with the idea that they represent systems with behaviors at all scales, and according to the

multiscale complexity they are more complex than either fully disordered or fully ordered

systems with the same number of degrees of freedom at all scales except the smallest and

largest.

Finally, to relate the multiscale complexity to the usual study of large-scale behavior

through the order parameters of an equilibrium thermodynamic system, we label the entropy

by the size of the system, CN(k), and suggest that the thermodynamic limit is given by:

C∞(α) = lim
N→∞

CN(αN). We note that the order parameter reflects the highly redundant

information that is available about the system in the thermodynamic limit. For example,

we can consider an interacting Ising system with N interacting spins. Assuming that the

system is ferromagnetic, regardless of the geometry of interactions (long range or spatial),

the high temperature limit corresponds to independent spins and the low temperature limit

to having all spins aligned. The multiscale complexity of such a system in these two limits

is readily understood. In the high temperature limit each of the microscopic variables is

independent and the complexity is given by C(k) = N for k = 1, and zero otherwise.

In the low temperature limit C(k) = 1 for k ≤ N . The same result applies for an anti-

ferromagnet on a bipartite lattice. We can also consider generalizations of the Ising model,

such as the Mattis model[47]. The conventional treatment of the thermodynamic limit

requires explicitly recognizing the order parameter to study its properties. By contrast,

the multiscale complexity, because it evaluates all k-fold correlations, allows for all possible
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orderings. This can be readily proven for the Mattis model, which, if the order parameter is

known, can be transformed into the conventional infinite range Ferromagnetic Ising model by

redefining the sign of a subset of the spin variables. The proof follows from the invariance of

the multiscale complexity under redefinition of the variables. Similar considerations apply to

more complex models such as spin glass[46] models, where conventional treatments require

identifying ”by-hand” the order parameter. Thus at low temperatures, the information in

the macroscopic order will be present in CN(k) at macroscopic values of k. Application of

this methodology to thermodynamic systems to obtain the characteristic behavior through

the phase transitions will be further discussed elsewhere[48].

In summary, we have studied the multiscale properties of the structure of the state space

of a system in terms of the interdependence of components, treating all possible (k-fold) cor-

relations. This treatment made use of the formal properties of the information of subsets of

the system. We derived a specific expression for the information that is present in k or more

fold redundancy in the system, C(k) and for precisely k-fold redundancy, D(k). We proved

the expressions by showing that they are the only ones that are correct for the case of a sys-

tem partitioned into subsets that are completely interdependent. We further proved a sum

rule demonstrating a tradeoff, for different systems with the same underlying variables, of in-

formation needed to describe systems at different scales. This multiscale treatment provided

a resolution of two conceptual difficulties facing formal studies of quantitative complexity.

Furthermore, we illustrated the utility of the formalism and its conceptual framework by

applying it to a variety of models of simple and complex systems. We (a) calculated the

multiscale complexity of simple interdependent systems revealing some interesting results,

particularly that negative values for the k-fold information are possible; (b) made an ini-

tial step toward extending the formalism to continuum variables and indistinguishability;

(c) showed the broader conceptual relevance of the formalism by considering the difference

between the multiscale characterization of independent biological cellular microorganisms,

and cells forming a human being; (d) considered a model of stochastic fractals illustrating

the idea that complex systems have behaviors on multiple scales; and (e) considered the ap-

plication of the formalism to traditional studies of thermodynamic phase transitions. These

results for models of simple and complex systems suggest that the multiscale complexity

provides a widely applicable quantitative and conceptual tool for characterizing complex

systems and their behaviors on multiple scales. In separate work we address the relevance of
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the multiscale complexity to the response of the system to external forces and the functional

capabilities of complex biological and social systems, and particularly the importance of the

sum rule in capturing a trade-off between behaviors / capabilities of a system at different

scales [49–51].
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