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A substantial number of studies have extended the work on universal properties in

physical systems to complex networks in social, biological, and technological systems.

In this paper, we present a complex networks perspective on interfirm organizational

networks by mapping, analyzing and modeling the spatial structure of a large inter-

firm competition network across a variety of sectors and industries within the United

States. We propose a model that is able to reproduce experimentally observed char-

acteristics of competition networks as a natural outcome of a minimal set of general

mechanisms governing the evolution of competition networks. The model suggests

that macro dynamical processes determine to a large extent the ecology of industry

structure. There is an asymmetry between companies that are considered competi-

tors, and companies that consider others as their competitors. All companies only

consider a small number of other companies as competitors, however there are a few

companies that are considered as competitors by many others. Geographically, the

density of corporate headquarters strongly correlates with local population density,

and the probability two firms are competitors declines with geographic distance. We

construct these properties by growing a corporate network with competitive links

using random incorporations modulated by population density and geographic dis-

tance. Despite randomness, the historical order of incorporation matters to network

structure. Our new analysis, methodology and empirical results are relevant to var-

ious phenomena of organizational behavior, and have implications to research fields

such as economic geography, economic sociology, and regional economic development.
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I. INTRODUCTION

In recent years, major advances have been made in understanding the structure and dy-

namics of real-world social, biological, and technological complex networks [1–4]. Complex

networks theory has also contributed to organizational and managerial environments, where

new theoretical approaches and useful insights from application to real data have been ob-

tained [5–7]. Through theory and experiment, these studies have characterized the structural

properties of such networks, their mechanisms of formation, and the way these underlying

structural properties provide direct information about the characteristics of network dynam-

ics and function. Of particular interest are scale-free networks where the degree (i.e., the

number of nodes adjacent to a node) is distributed according to a power law or a long right

tail distribution. Such networks have characteristic structural features like “hubs”, highly

connected nodes [8], features which cause them to exhibit super-robustness against failures

[9, 10] on the one hand, and super-vulnerability to deliberate attacks and epidemic spreading

[11] on the other. Modeling real world large interfirm competition networks, which capture

the coupling between economic units, is important to understanding the complex dynamics,

robustness, and fragility of economic activity.

Here, we use network methodology to analyze and model the spatial structure of a large

competition network, representing competitive interactions among firms within the United

States. We find that the framework of geographic complex networks, mainly applied to

natural and engineered systems, can be extended to capture the underlying structure and

macro dynamics of interfirm competition, a system of heterogeneous economic units in-

volved in strategic interaction. We extend the understanding of organizational problems

by following the “empirics first” multidisciplinary approach [1, 3, 5, 6, 47, 48]. To study

complex systems, comprising many interacting units, we first look for robust empirical laws

that describe the complex interaction followed by theoretical models that help understand

and reproduce the main properties of the real world system. Our study combines several

empirical measurements of competition networks and theoretical models, which are then

validated and informed by the actual measurements. We focus initially on four fundamen-

tal properties: node degree distributions, the spatial distribution of firms, the relationship
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between connectivity probability and geographic distance, and edge length distribution. We

then propose a simple model where new firms are added to the 2D surface of the Earth,

and become connected to existing firms following a preferential attachment rule that is also

dependent on geographic distance. We show that the model is able to remarkably reproduce

the observed measurements.

We represent corporate entities by network nodes, and we connect nodes using directed

edges following the competitive relationships of the firms involved. A network-based ap-

proach to competition views competition as a property of observable social ties among

identifiable organizations, and as including conscious recognition by the organizations about

the relation (see, e.g., [46]. (This is distinct from the view taken in organizational ecology,

in which organizations may compete even though they lack awareness of one another’s exis-

tence and therefore cannot take one another’s actions into account [52]. This type of diffuse

competition is defined as the combined effect of many organizations upon a given organiza-

tion. Following this interpretation, the potential for two firms to compete is further defined

in terms of the degree of intersection or overlap of their “fundamental niches” – the set of

resources and environmental conditions that can sustain the functioning of firms [52–55].)

While most network-theory research has concerned nodes and connections without any

reference to an underlying space, in many real-world networks nodes and links are embedded

in a physical space. In such networks, the interactions between the nodes depend on the

geometrical distance between nodes; often, edges tend to link nodes that are close neigh-

bors. Examples include natural, engineered, and social networks [12] such as the physical

arrangement of the Internet [13–16], road and airline networks [16–18], broadcast signaling

networks [19], power grids [20], mobile communication networks [21], and neuronal net-

works [22]. In real-world systems, the probability that two nodes are connected has been

seen to decrease as a power law [14, 21, 23] or an exponential [15] of the distance between

them. Other research has characterized the geographical deployment of nodes in two or

three-dimensional Euclidean space. For example, Yook et al. [14] and Lakhina et al. [15]

have shown that in technologically developed countries the Internet demand (measured by

router density) is proportional to the population density. Several models of spatial networks

have been proposed in the complex systems literature among which include placing nodes

on simple regular lattices that are either joined randomly depending on their distance or if

their distance is less than a certain cutoff [24, 25]; combining network growth and prefer-
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ential attachment modulated by distance selection mechanisms [14, 26, 27]; and generating

geographic networks based on local optimization processes [16].

Concerns of geographic and social proximity are not unknown in the social sciences.

In sociology, gravity-based models predict that the likelihood of a relationship is inversely

proportional to the physical distance between two individuals [43, 44]. In the context of

international economics, the gravity model of trade predicts trade-flow volumes and capital

flows between two units to be directly proportional to the economic sizes of the units (using

GDP data) and inversely proportional to the distance between them [45]. In economic

geography, the gravity model was used to explain migration flows between countries, regions,

or cities [46], and showed that movement of people between cities is proportional to the

product of their population size and inversely proportional to the square of the distance

between them.

Spatial networks have also been of interest to economic geographers, who considered

networks as a means for understanding urban growth, geographical clusters, international

trade, and globalization [28]. These efforts, however, have been mostly metaphorical and

insufficiently formalized [29]. In sociology and organization theory, models of networks (in-

cluding spatial networks) have largely focused on the factors that affect the dynamics of the

formation of linkages between members of a network [30–34]. These empirical studies pro-

vide support for preferential attachment type of mechanisms [8] as an important driver of tie

selection [34–37]. For example, the alliance behavior of multinational corporations suggests

that firms will be more likely to have further alliances in the future with increasing experi-

ence and connectivity [33, 36], and an expanding network of interfirm alliances in American

biotech exhibits preferential attachment [37]. Geography as a significant determinant of tie

selection and network expansion has also been demonstrated. Empirical research illustrates

that ties between firms, representing alliances, corporate board interlocks, or investments,

are more likely when two firms are co-located [34, 37–39]. Moreover, studies show that geo-

graphical proximity affects the entry of firms in a network forcing them to locate in spatial

proximity to industry agglomeration [40, 41].

In Section 2, we represent real-world data on corporate competition and headquarter

location as a directed network in space. In Section 3, we report an asymmetry between the in-

degree (number of corporations a firm is affected by) and out-degree (number of corporations

a firm affects) distributions. Next, in Section 4, we report that the geographic arrangement of
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corporate headquarters strongly correlates with population density and that the probability

two firms are competitors declines with geographic distance. In Section 5, we develop a single

model for spatial network growth that yields both the degree distributions and geographic

statistics of the empirical network. We conclude in Section 6 with implications for the field

of economic geography.

II. CORPORATE GEOGRAPHIC COMPETITION NETWORK DATA

The competition network was reconstructed from information records provided by

Hoover’s – a large business research company that offers comprehensive business informa-

tion through the Internet on corporations and organizations in over 600 industries. Within

the detailed company records, information can be found on location type (headquarters or

other); street, city and state address; financial information; industry codes; and competitors

list. The competitors list was selected based on various information sources including public

documents (e.g., SEC filings), company websites, industry-specific trade and journals, and

directly from the company themselves. In order to avoid problems of disjoint maps, we limit

our study to firms with headquarters locations in the contiguous United States.

Note that the location of a firm’s headquarters is not necessarily the location of all that

firm’s activities. A large corporation can have many local or regional offices (for example,

Google is headquartered in Mountain View, California, but has branches in other US cities

including Atlanta, Boston, Chicago, New York and Washington, D.C. [42]); a major indus-

trial manufacturer can have its main corporate offices in one city and factories scattered

elsewhere. We focus here on headquarters location, for which it is simplest to define a

unique value for each firm. We will see that the statistics show headquarters location to be

a meaningful quantity with considerable predictive power.

The competition network can be studied by several sampling methods [50]. Here, we use

“snowball sampling” (e.g., [51]) starting from a single node (company), we select all of the

nodes directly linked from it, then the nodes linked from those selected in the last step,

continuing until the desired number of nodes are sampled. Snowball sampling is a useful

technique when relational data is not given explicitly. In our case, Hoover’s maintains the

corporate data in a website with the following structure: webpages correspond to different

companies, and each webpage includes general data related to the company as well as a
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list of companies judged to be competitors. Thus, to construct the network, we perform

snowball sampling. We begin with a company and collect its list of competitors; in a

recursive fashion we traverse the list of competitors to other webpages, collecting more

list of competitors and so on. This method could possibly generate a network that does

not reflect (in a statistical fashion) the structure of the “real” network, because we start

the sampling from a particular node. To eliminate this bias, one can construct different

networks by starting the same snowball sampling method from different seed companies.

After one computes several sampled networks G1, G2, G3, . . . , one takes the union of these

networks (the set of nodes is the union of the set of nodes in G1, G2, G3, . . . , and duplicated

arcs are excluded) to get a larger sampled network. This procedure can in principle generate

a network with multiple connected components, which is indeed the case for our corporate

competition network.

Our sampling of the business information site, combining sampled networks starting from

companies whose main activities are in different industries, resulted in a directed network

of 10753 companies and 94953 links. Taking the undirected version of the network, we find

that it has three components: one giant components that includes 10718 nodes; and three

small components with 2, 1, and 1 nodes. This occurs because the original sampled networks

include companies around the globe, while the network analyzed is reduced to companies

that operate within the United States. Consequently, despite the overlaps among sampled

networks, reducing the network to include only United States companies yields disconnected

nodes.

III. ANALYSIS OF IN- AND OUT- DEGREE DISTRIBUTIONS

A competition network can be considered as a directed graph with N nodes and L arcs,

where there is an incoming arc to company vi from company vj if company vi lists vj

as a competitor. There are 94,953 competition links in this directed network, with an

average number of about 9 incoming (or outgoing) arcs connected to a node, and 40% of

the competition links being reciprocal.

We compared (see Figure 1) the cumulative probability distributions Pin(k) and Pout(k)

that a company has more than k incoming and outgoing links, respectively. The out-

degree distribution can be described by a power law (the “scale-free” property) with a cutoff
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FIG. 1: The log-log plots of the cumulative distributions of incoming and outgoing links. (A)

Aggregate competition network (10753 nodes, 94953 arcs). The out-degree distribution is charac-

terized by an exponentially truncated power-law with γ ≈ 2.2. The in-degree distribution is fitted

by an exponential (exp− k
7.1). (B) Several sampled networks. The networks were identified by

snowball sampling, starting from a seed company whose main activity is in a particular industry

(Energy & Utilities: 4248 nodes, 35789 arcs; Transportation Services: 3408 nodes, 31330 arcs;

Computer Hardware: 6914 nodes, 56663 arcs; Construction Industry: 4094 nodes, 35376 arcs;

Agriculture: 3245 nodes, 32758 arcs). We find that the out-degree distributions of all sampled

networks are similar to each other as well as to the aggregate network, suggesting the robustness

of the snowball sampling used here.
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introduced at some characteristic scale k−γe−k/k
∗
, with k∗ ≈ 92 and γ ≈ 2.2. In contrast, the

in-degree distribution is described by a fast decaying function, implying that companies with

large incoming connectivity are practically absent. In this case, the in-degree distribution

might be better fitted by an exponential as seen by the markedly curved-shaped behavior in

Figure 1. Thus, while companies typically consider as competitors a small number of other

companies, there are a few companies that are considered as competitors by many others.

Asymmetric in- and out- degree distributions have been found in other large complex

networks [5, 48]. The connectivity of competition networks is important in constraining and

determining many aspects of dynamical processes occurring on top of them, such as pricing

decisions, strategic behavior, and firm performance. For example, it stands to reason that

events and activities of central firms will tend to quickly propagate (due to the heterogeneous

incoming connectivity) throughout the entire competition network, benefiting or impairing

the vitality of the interconnected firms. This seems similar to ecological networks, where

the loss of a keystone species could have large effects on the network [52].

We next examine the spatial characteristics of competition networks. The specific latitude

and longitude of each company was obtained from its address using Yahoo’s Geocoding Web

Service, and the distance between two companies was calculated by using their geographical

coordinates. In Figure 2, we compare the geographical deployment of companies with the

population distribution in the contiguous U.S. Visual inspection of these maps suggests that

the spatial distribution of companies is strongly correlated with the population distribution.

We note that this kind of correlation was also observed for the geographical deployment of

Internet routers [14, 15].

The patterns shown in Figure 2 can be explained as dynamic interplay between population

growth and firm emergence. It is plausible that new ideas generated by entrepreneurs are

in proportion to the size of the underlying population. New firms and job opportunities, in

turn, will tend to increase the size of the local population (employed directly or indirectly

by the firms), which will lead to further ideas, etc.

IV. ANALYSIS OF GEOGRAPHICAL DISTRIBUTIONS

The corporate competition spatial network enables us to relate competition and geo-

graphic distance. Figure 3 shows the probability P (vi → vj|d(vi, vj) = l) that two companies
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FIG. 2: (A) Geographical deployment of companies with headquarters locations in the contiguous

United States. The latitude and longitude of each company was obtained from its address using

Yahoo’s Geocoding Web Service. (B) Map of the 2000 Population Distribution in the United

States (also referred to as the “Nighttime Map”) produced by the U. S. Census Bureau as part

of the 2000 Decennial Census. In this map, white dots coalesce to form the urban population

concentrations; each white “dot” represents 7,500 people.

separated by a distance l are related by a competition link. As the distance l increases, we

observe that the probability tends to decrease according to a power-law, indicating that geo-

graphic proximity increases the probability of competition. However, the fluctuations around

the power-law behavior for distances larger than ≈ 1000 km suggest that a model for the

presence of competition needs to take into account both geography-dependent mechanisms

and non-geographic processes.

The physical distance between nodes in geographic networks plays an important role
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FIG. 3: The relationship between geographic distance and competition. The log-log plot shows the

probability that two companies separated by a distance l are related by a competition link. The

competition probability is fitted by a power-law l−β with β ≈ 0.3. The probability was estimated

from the proportion of pairs of connected companies separated by a distance l among all the total

number of pairs of (connected or not) companies separated by a distance l (practically, link lengths

with a resolution of 30 km are examined).

in determining the costs and benefits of communication and transport. As such, common

to many geographic networks is a bias towards shorter links. The competition network

analyzed here is of no exception (but perhaps for different reasons). We show in Figure 4

the cumulative probability distribution that the length of a link is greater than l kilometers.

We find that the link length distribution can be well fitted by an exponential function and

sharp subsequent decay.

The geographic nature of the competition network also has an effect on its topological

robustness. In network theory, “robustness” refers to a network’s ability to withstand at-

tacks, such as random deletion of nodes or the targeted removal of highly-connected hubs.

The effect of attacks is typically gauged by the change effected in the network’s topological

properties, such as the size of its largest component: a network which falls apart into many
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FIG. 4: (A) The cumulative probability distribution that the length of a link is greater than

kilometers. The cumulative distribution is well fitted by an exponential (exp− l
1688) with a sharp

subsequent decay. The inset shows the corresponding semilog plot. (B) The histogram of the

lengths of links. We see that the competition network has many very short links of length 100 km

or less, a large portion of links of length 3800 km or less, and then an apparent smaller peak of

longer links around 4000 km. Many of these longer links represent continent-wide distances.
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FIG. 5: Robustness of the competition network, as demonstrated by the deletion of nodes. Blue

(upper) line shows the size of the largest component surviving as nodes are randomly deleted; green

(lower) line shows the size of the largest component as nodes are deleted in order of decreasing

degree. Higher-degree nodes are more “central” in that attacking them breaks apart the network

more efficiently. Inset: the same data, plotted logarithmically.

small pieces upon the excision of a single node is fragile. Power-law networks grown by

preferential attachment have been found to be resilient against random attacks, but weak

against the targeted deletion of high-degree nodes. Here, we see that the degree distribution

is not the only relevant factor in determining robustness; as Figure 5 shows, even after we

delete thousands of nodes, the network does not dissolve into disconnected pieces.



13

V. MODELING CORPORATE SPATIAL COMPETITION NETWORKS

Although the competition network studied here represents data collected at particular

time point, it is the result of a specific development path of network dynamics that involve

firm entries and exit as well as the formation and dissolution of competition links. The

heavy tail characteristic displayed by the out-degree distribution of the competition net-

work (Figure 1) suggests that the evolution of competition networks could be governed by

a preferential attachment rule [8]. On the other hand, Figures 3 and 4 show that firms

compete according to the distance between them, suggesting that the formation of links is

geometrical in nature. Moreover, the strong correlation between firm and population dis-

tributions (Figure 2) suggests that any model of competition should take into account the

concentration of firms in highly populated areas. We therefore seek a model that considers

the interplay between preferential attachment, geographic distance, and population density

effects. A real understanding and modeling of competition networks should be able to repro-

duce experimentally observed characteristics of competition networks — such as the degree

and link length distributions reported in Figures 1 and 4 — as natural outcome of a minimal

set of general mechanisms governing the evolution of competition networks.

Network growth models including geographical distance of nodes [14, 25, 26] are a natural

modeling approach for competition networks. We identify points on the curved surface of

the Earth by their latitude and longitude coordinates, and compute geographic distances

using the great circle distance between pairs of points on the surface of a sphere. We then

superimpose on the map a grid consisting of two sets of parallel longitude and latitude lines,

dividing the Earth’s surface into squares (for our numerical simulations, we use high resolu-

tion data that consists of boxes of 0.0083◦ × 0.0083◦). At each box, the population density

is calculated from population data by dividing the population of each box by its area in

square kilometers. In the following, firms are distributed on the Earth’s surface by sampling

from the population density distribution. We start with m0 firms, each pair connected by a

competition link, and at each subsequent step the network grows with the addition of new

firms. For each new firm, m new directed competition links are created connecting it to

firms already present in the system. The exponentially truncated power-law distribution of

the outgoing connections (Figure 1) suggests the use of a nonlinear preferential attachment

rule [1, 3], which generalizes the linear preferential attachment mechanism that results in
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a power-law degree distribution [8]. This, combined with the fact that the competition

probability tends to decrease with geographic distance according to a power-law, offers the

possibility that the growth of competition networks is governed by a nonlinear preferential

attachment rule modulated by a link length dependent factor. More specifically, the firms j

receiving the new links from firm i are chosen with probability proportional to kαj l
β
ij, where

kj is the total degree of firm j; lij is the length in kilometers of the directed link from i to

j; α and β are continuously varying parameters.

We have tested the validity of the above model by conducting several extensive com-

putational experiments, and comparing the simulation results with the actual observations

made from the competition network. In the simulations below, we have used a population

density grid from the 2000 U.S. Census produced by the Columbia University Center for

International Earth Information Network (CIESIN). The grid has a resolution of 30 arc-

seconds (0.0083 decimal degrees), or approximately 1 square km. In all cases, we start with

m0 = 8 connected firms, and at each step of network growth a new firm with m = 8 directed

competition links will be connected to firms already present in the system until the total

number of firms reaches the actual number of firms in the sampled competition network

N = 10753.

The model above offers a good flexibility for calibration since two parameters can be

modified. Altering the value of α and β will influence the estimated spatial interactions.

We have calibrated our model to correctly reproduce the experimentally observed degree

and link length distributions characteristics reported in Figures 1 and 4, and have derived

the best-fitted values of α = 0.85 and β = −0.3 (henceforth called the Competition model).

In addition, we examine three extreme cases of the competition network model: (1) Linear

Preferential Attachment: α = 1, β = 0; (2) Gravity I: α = 0, β = −1; and (3) Gravity

II: α = 0, β = −2. The first case corresponds to the scale-free network model developed

by Barabási and Albert [8] where an already present firm receives a new competition link

according to a linear preferential attachment rule, that is, with probability proportional to

its degree. The second and third cases reflect a variety of gravity models in social science

that are based on the empirical principle that proximity in geographic (and social) space

affects the likelihood of interaction [43–46].

Figures 6A and 6B compare the link length and out-degree distributions, respectively,

generated by the above four models with the experimentally observed distributions shown in



15

Figures 1A and 4A. We note that both the link length and out-degree distributions of the real

competition network deviates significantly from that produced by the Linear Preferential

Attachment, Gravity I, and Gravity II models. The simulation results, however, of the

Competition model are able to nicely reproduce the actual observations of the competition

network, indicating that the Competition model gives a better characterization of the data

than the three models specified above. The Competition model takes into account three

effects: population density, preferential attachment, and geographic distance. The value of

α = 0.85 reflects a sublinear (α < 1) tendency of preferential linking to firms with many

competition links, which can result in a truncated power-law degree distribution [2, 5, 46], as

indeed observed experimentally (Figure 1A). The value of β = −0.3 shows that the “friction

of distance,” or how rapidly interaction decreases as distance increases, is relatively small

compared to the Gravity-based models.

In order to test for the effect of geographical distance bias on the competition network

growth, we have held the “preferential attachment” parameter α at its optimal value 0.85

and have varied the “friction of distance” parameter β set at values 0, −0.3, −1, and −2.

Figure 7A shows how a decrease in the value of β leads to a significant bias towards shorter

links. However, Figure 7B shows that the out-degree distributions are almost not affected

by the value of β, when α is set at the optimal value 0.85. This suggests that the parameter

α has a strong effect on the out-degree distribution, and weak effect on the link length

distribution.

Testing for the effect of preferential attachment on the competition network growth fur-

ther corroborates this finding. This is done by experimenting with varying values of α, when

β is set at the optimal value −0.3. As shown in Figures 8A and 8B, while the link length

distributions for varying α are not changed and are similar to the actual distribution, the

out-degree distributions deviate significantly for values of α that are different from the opti-

mal value 0.85. These results imply that the actual link length distribution is determined to

a large extent by the “friction of distance” parameter β, and weakly so by the “preferential

attachment” parameter α. Overall, Figures 7–8 show once more that the Competition model

provides a better characterization of the competition network than other combinations of α

and β.

Finally, we test for the effect of population density on the competition network growth.

To this end, we have set the values of α and β to their optimal values, and have chosen
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FIG. 6: Comparison between the actual competition network and simulation results of four net-

work competition models, with respect to the cumulative link length (A) and out-degree (B)

distributions. The models considered are: Linear Preferential Attachment (black dashed line,

α = 1, β = 0); Competition model (green dotted line, α = 0.85, β = −0.3); Gravity I (gray

dashed line, α = 0, β = −1); Gravity II (blue dashed-dotted line, α = 0, β = −2). Distributions

corresponding to the actual competition network are shown as red solid lines. In the simulations,

the contiguous United States range from to latitude, and from to longitude, and we have used a 3120

by 7080 population density grid from the 2000 U.S. Census with a box resolution of 30 arc-seconds

(0.0083 decimal degrees), or approximately 1 square km. In all cases, firm location on the surface

of the contiguous United States is determined by randomly sampling from the population density

distribution. Once a box is sampled, the firm’s latitude and longitude are uniformly and randomly

located within the box. (A) Comparison of cumulative link length distributions. (B) Comparison

of cumulative out-degree distributions. The out-degree distribution generated by the Preferential

Attachment model (with linear preferential attachment and without geographical distance effect)

is fitted by a power-law; the out-degree distribution corresponding to the Competition model is

characterized by an exponentially truncated power-law; and both Gravity I and Gravity II (with

only geographical distance effect) generate distributions that are well fitted by an exponential.

the location of firms based on two methods: (1) Location by Population Density (as in the

Competition model): firms are distributed on the surface of the contiguous U.S. by sampling

from the population density distribution; and (2) Random Location: firms are distributed

randomly and uniformly on the surface of the contiguous U.S. Figure 9B shows that both firm



17

FIG. 7: The effect of the geographical distance bias on the link length (A) and out-degree (B)

distributions. In the simulations, we have held the “preferential attachment” parameter α at

its optimal value 0.85, firm location is determined by the population density distribution, and

we have varied the “friction of distance” parameter β. Four network competition models are

considered: Sublinear Preferential Attachment without Geographical Distance Bias (black dashed

line, α = 0.85, β = 0); Competition model (green dotted line, α = 0.85, β = −0.3); Sublinear

Preferential Attachment with Inversely Linear Distance Bias (gray dashed line, α = 0.85, β = −1),

and Sublinear Preferential Attachment with Inversely Square Distance Bias (blue dashed-dotted

line, α = 0.85, β = −2). Distributions of the actual competition network are shown as red solid

lines.

placement schemes give similar results when comparing their out-degree distribution results

with that of the observed data. However, as shown in Figure 9A, the link length distribution

produced by the random location scheme deviates significantly from that produced by both

the Competition model and actual competition network. In summary, Figures 6–9 provide

good evidence that the structure of competition networks can be better explained by taking

into account network dynamical growth, preferential attachment, geographical distance, and

demographic factors such as population density. In particular, a simple model that is able

to reproduce reasonably well the main observed features was proposed.



18

FIG. 8: The effect of the preferential attachment bias on the link length (A) and out-degree (B)

distributions. In the simulations, we have held the “friction of distance” parameter β at its optimal

value −0.3, firm location is determined by the population density distribution, and we have varied

the “preferential attachment” parameter α. Three network competition models are considered:

Geographical Distance Bias without Preferential Attachment (black dashed line, α = 0, β = −0.3);

Competition model (green dotted line, α = 0.85, β = −0.3); and Linear Preferential Attachment

with Distance Bias (blue dashed-dotted line, α = 1, β = −0.3). Distributions of the actual

competition network are shown as red solid lines.

VI. CONCLUSIONS

We have analyzed a large inter-organizational network where the nodes are firms located

in the U.S. and directed links represent competition by the nodes forming the link. We

focused first on topological properties, and have shown that the competition network ex-

hibits a noticeable asymmetry between the exponentially truncated power law distribution

of outgoing competition links and the exponential law governing the in-degree distribution.

This characteristic, which is consistent with results of other complex networks [5, 48], can

be explained as follows: Firms are not regarded as passive economic entities, but the ac-

tions taken by firms could also be seen as determined by and affecting the behavior of other

competitors. The exponential law governing the in-degree distribution could indicate a lim-

itation on the firm’s capacity to compete with (and thus be affected by) many firms, while

the power law governing the out-degree distribution could reflect the ability of competition
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FIG. 9: The effect of firm location decisions on the link length (A) and out-degree (B) distribu-

tions. In the simulations, we have held the “preferential attachment” parameter α and “friction

of distance” parameter β at their optimal values 0.85 and −0.3, respectively. Firm location is

determined by two distinct mechanisms: Random Location (black dashed line) by which firms are

distributed randomly and uniformly on the surface of the contiguous U.S.; and Location by Popu-

lation Density (green dotted line) by which firms are distributed on the surface of the contiguous

U.S. by sampling from the population density distribution. Distributions of the actual competition

network are shown as red solid lines.

networks to minimize the effects caused by major events or changes that require significant

adjustment in firm behavior. Indeed, the power-law behavior of the out-degree distribution

implies that there are only a few firms with many outgoing competition links (i.e., affecting

many others), which means that most of the time the competition network will display a

low sensitivity to network perturbations. Altogether these results suggest that the structure

of competition networks tend to stabilize the dynamics of competition.

The geographical aspect of the competition network has been analyzed in three ways.

First, we have shown that the spatial distribution of companies is strongly correlated with

the population distribution. This finding emphasizes the important role of environmental

and exogenous mechanisms as context for network formation. Second, we have shown that

geographic proximity increases the probability of competition following a power law, char-

acterized by a scaling coefficient (“friction of distance”) which is considerably lower than
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values used in other gravity-based models. This result could be explained, for instance, as

a consequence of improvements in transport efficiency or communications technology, both

of which tend to reduce the value of the friction of distance β. Third, we have analyzed

the physical distance between firms, and have shown that the link length probability dis-

tribution is well fitted by a slowly decaying exponential distribution with many very short

links of length less or equal to 100 km, and extended link lengths of up to 4000 km. This

suggests the tendency of competition networks to agglomerate into geographic concentra-

tions (“clusters”) of interconnected firms with characteristic size of about 100 km, and with

competition links of varying lengths between separate clusters.

Motivated by the above empirical observations, we have proposed a model for the evolu-

tion of competition networks, building on recent studies of geographical scale-free networks

[14, 25–27]. By comparing simulation results with the empirical observations of the com-

petition network, we have demonstrated that the model is able to reproduce the above

features. The competition network model includes two important features that provide in-

sights into the factors governing the origin of competition networks: (1) spatial locations of

firms, which is positively correlated with the population density; and (2) stochastic incre-

mental growth governed by nonlinear preferential attachment rule modulated by geographic

distance. The stochastic nature of the model suggests that competition networks evolve

following cumulative mechanisms where historical accidents, serendipity, and non-linearities

induce path-dependent network trajectories.

The model and results presented here are a step towards a coherent theory of interfirm

competition network evolution in particular, and evolutionary perspective of economic ge-

ography in general. More research is needed in several directions. In this paper we consider

the entry of new firms and their links as the only process affecting the size of the network.

However, a more realistic description of the evolution of competition networks should take

into account the effect of various local events on the large topology of the network, includ-

ing the formation of new competition links between existing firms, dissolution of existing

competition links, shifting (or rewiring) of existing competition links, exit of existing firms,

and merging of existing firms. The relative frequency of these local processes will determine

(combined with geographic and population density effects) to a large degree the structure

of competition networks. Moreover, other tie formation mechanisms operating at the micro-

level could be considered such as similarity/dissimilarity in size, performance, or financial
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indicators between pairs of potential competing firms. While it is theoretically possible to

incorporate the above modifications, the scarcity (at this point) of longitudinal competition

and firm-specific data over significant time periods make it difficult to validate the model or

parameterize it for simulation and prediction purposes.

The simple competition model introduced here offers an evolutionary perspective on eco-

nomic geography and market structure that significantly extends traditional notions of eco-

nomic competition and geographical clusters. Combined with proper models of competition

dynamics, it also opens up a new range of experimental and analytic possibilities in realisti-

cally examining the effect of interfirm competition on firm performance, strategy dynamics,

price and output changes, technology diffusion, the emergence of fast-growing geographic

clusters (hot spots), and many other phenomena of industry dynamics (e.g., “Red Queen”

dynamics [56]). Finally, the model provides a framework to study the ability of competition

networks to be resilient (robust) to firm and economic fluctuations.
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