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Shannon information criterion for low-high diversity transition in Moran and voter models
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Mutation and drift play opposite roles in genetics. While mutation creates diversity, drift can cause gene
variants to disappear, especially when they are rare. In the absence of natural selection and migration, the
balance between the drift and mutation in a well-mixed population defines its diversity. The Moran model
captures the effects of these two evolutionary forces and has a counterpart in social dynamics, known as the voter
model with external opinion influencers. Two extreme outcomes of the voter model dynamics are consensus
and coexistence of opinions, which correspond to low and high diversity in the Moran model. Here we use a
Shannon’s information-theoretic approach to characterize the smooth transition between the states of consensus
and coexistence of opinions in the voter model. Mapping the Moran into the voter model, we extend the results
to the mutation-drift balance and characterize the transition between low and high diversity in finite populations.
Describing the population as a network of connected individuals, we show that the transition between the two
regimes depends on the network topology of the population and on the possible asymmetries in the mutation
rates.
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I. INTRODUCTION

Consensus dynamics in systems composed of multiple
agents is a fundamental aspect in many areas of the social and
biological sciences [1,2]. Understanding the structural and dy-
namical conditions that allow consensus to be established has
both theoretical [3–5] and applied [6] implications. Interest in
the subject covers several important phenomena, such as the
dynamics of cultural elements [7] and flow of information in
society [8], epidemic spreading [9,10], and animal collective
behavior [11,12]. In particular, the problems of allelic drift
in population genetics [13] and opinion dynamics in human
societies may be treated under this framework and have clas-
sically been described with two theoretical foundations: the
Moran model and the voter model.

The Moran model is a birth-death model describing the
evolution of allelic frequencies in a haploid population of
fixed size and two alleles [14]. In its classical formulation,
at each time step, one individual is chosen to die and another
is chosen to reproduce, with the offspring copying the allele
of the parent. This dynamics can be directly mapped into the
voter model [15], with the two alleles playing the role of two
opinions or political affiliations, and each individual adopting
the opinion of a randomly selected neighbor at each time
step. A natural extension of the Moran model includes the
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possibility of mutations, allowing the allele of the newborn
individual to differ from that of its parent. The role played
by mutations in the Moran model corresponds to external
influencers, or zealots, in the voter model [16,17], which are
a set of frozen-state individuals that can have their opinion
adopted, or copied, by other individuals but never change
their own state. The system dynamics’ can then be described
directly in terms of master equations [17] or in terms of the
rates of change between states [18,19].

In the absence of mutations, the Moran model converges
to a complete homogeneous state just due to fluctuations, also
called genetic drift. When mutation is bidirectional, the fixa-
tion of a single allele is prevented. This case characterizes the
so-called mutation-drift balance [20], which leads to higher
genetic diversity within the population [13]. Correspondingly,
in the voter model, the presence of influencers for both candi-
dates prevents the formation of consensus [17,21]. Complete
allele fixation in the Moran model and consensus in the voter
model are called absorbing states, where all the individuals
have the same state in equilibrium.

The total number of individuals having the same opinion
(allele) defines a macrostate in the voter (Moran) model. The
presence of external influencers leads to nontrivial steady-
state probability distributions of macrostates since consensus
formation would be permanently disturbed. Two phases can
then be distinguished in both models, depending on the num-
ber of influencers or the values of mutation rates: a phase
of low diversity, with a strong prevalence of one opinion (or
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allele), and a phase of high diversity, where both opinions
(or alleles) coexist. In both cases, the macrostates settle to
a steady-state distribution, but with microstates constantly
changing. The steady-state distribution depends continuously
on the number of influencers (or mutation rate) and there is
no sharp transition between the two phases. However, when
the population is structured by an underlying network of con-
nections (see Sec. II), the properties of the network affect
the parameter region where the smooth transition between the
phases occurs.

The importance of defining and detecting the transition
point in these finite systems is apparent in both biological
and social contexts. In biological populations, low diversity
is associated with monomorphism (allele fixation), whereas
high diversity indicates the coexistence of different morphs
(different alleles). If the only source of genetic variation is
mutation, knowledge of the critical mutation rate is impor-
tant to understand if the population can evolve to a state of
high diversity, where natural selection can act, leading, for
example, to speciation. Transition to a state of high diversity
can be caused not only by an increase in the mutation rate,
but also by a restructure of the spatial distribution of its in-
dividuals [22]. Similarly, in the context of the voter model,
the topology of the network of contacts in a social group can
affect the outcome of an election, changing it from consensus
to coexistence of opinions under fixed external influences.
Thus, in order to understand how network structure alters
the transition between the states, it is important to have a
precise and sensible definition of the transition point, which
can be applied to any network topology and levels of external
influence.

For well-mixed populations, corresponding to fully con-
nected networks, analytical solutions for the steady-state
probability distribution of the voter model can be obtained
[17] and used to identify the transition point between the high
and low diversity phases. In particular, as we move around in
the parameter space of the model, the stationary distributions
exhibit strikingly different shapes. The high diversity phase
is characterized by unimodal distributions with intermedi-
ate peaks, whereas the low diversity phase is characterized
by unimodal or bimodal distributions with peaks at extreme
values of the node state values. In this case, the uniform
probability distribution, where all states are equally likely,
marks the transition between the two phases [17,22]. This
transition is obtained when the number of influencers for each
opinion is equal to one, the value of which is defined as
the transition point of the model. Although an approximation
can be obtained for the steady-state distribution in structured
populations with more general network topologies [17,22], the
transition between the two phases is less well defined analyti-
cally compared with fully connected networks, and cannot be
determined by direct analysis of the shape of the distribution.

In the language of statistical physics, low and high diversity
states correspond to ordered and disordered phases, respec-
tively. However, because we are dealing with finite systems
and smooth crossover between the phases, there is no evi-
dent order parameter to mark the point of transition. Here
we propose a practical approach for analyzing the transition
between high and low diversity states in the Moran or the
voter model using the Shannon entropy. In the context of

information theory, the entropy expresses the inherent uncer-
tainty associated with the occurrence of given states in the
system. Accordingly, we characterize the transition point as
the parameter values that maximize the uncertainty around
the macrostates and, therefore, the Shannon entropy. The
method is consistent with the fully mixed population case,
and is sufficiently flexible to characterize the transition in
general structured populations with symmetric or asymmet-
ric mutation rates (analogously, number of influencers in the
voter model). We develop a mean-field approximation for
the transition point and compare its accuracy with results—
obtained by the information-theoretic method—for ring and
lattice networks. Finally, we analyze the effect of network de-
gree, asymmetries in mutation rates (or external influencers),
and network randomness on the smooth low-high diversity
transition.

II. METHODS

A. Moran and voter models

In order to describe the transition between high and low
diversity in the Moran model, we explore its analogy with
the voter model with external influencers. The Moran model
describes a population where each individual i is defined by
a biallelic gene xi, with xi ∈ {0, 1} representing two possible
alleles [14,23–25]. Individuals are haploid and the population
has a finite and fixed size N . Here, we use a modified version
of the Moran model that allows for sexual reproduction and
mutation [22], with a structured population represented as
a network linking potential sexual partners. At each step, a
focal parent is selected to mate with a sexual partner. The
focal and the partner individuals can mate only if they are
linked in a network of interactions, defined by an adjacency
matrix A whose elements Ai j are assigned 1 if the individuals
i and j are connected (reads as “i can reproduce with j”), and
0 otherwise. The offspring inherits the allele of one of the
parents with equal probability. After reproduction, there is a
chance μ− that the offspring gene mutates from allele 0 to 1
and a chance μ+ that the offspring gene mutates from allele 1
to 0. Finally, the focal parent is replaced by the offspring.

In the voter model, individuals decide between two can-
didates in an election (represented by candidates 0 and 1),
while being influenced in their vote opinion by their peers
[6,15,18,19]. A population of voters is represented by N nodes
in a network of social connections, in which first neighbors
can communicate and influence each other’s votes. In addi-
tion, external nodes with fixed opinions may also be present
and they are connected to every node in the network, influ-
encing all the individuals. This simulates the effect of strong
political supporters or political propaganda [26,27]. The num-
ber of nodes with fixed opinions are defined as N0 (supporting
candidate 0) and N1 (supporting candidate 1). Here we will re-
fer to the degree of node i–ki as the the number of connections
with other voters, excluding the external influencers.

At each time step, one of the voters is randomly chosen
(step 2 in Fig. 1), keeping its opinion with probability p or
copying the opinion of one of its neighbors with probability
(1 − p) (step 3 in Fig. 1). The opinion is copied from one of
the neighbors in the network or one of the external influencers
(fixed nodes).
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FIG. 1. The voter model with external influencers. (1) Voters are
represented by circles in a network of social contacts, squares are
external influencers, and colors (shades of gray) represent opinions.
(2) A focal individual is randomly selected to be updated [blue (light
gray) circle]. Its neighbors are shown with a thick blue (light gray)
border. (3) The focal individual chooses a random neighbor to copy.
(4) The state of the focal individual is updated.

Both models can be described by a Markov chain [28]
with analogous master equations describing the probability
Pt+1(x) of having a microstate x = (x1, x2, . . . , xN ) at time
t + 1 given the probabilities at time t (see the Appendix). For
regular networks, where the degree of a node i is ki = k for all
nodes, there is an exact correspondence between the master
equations, allowing for a map between the parameters of the
two models. In such case, the mapping is given by{

N1 = 2μ−k
1−2μ̄

N0 = 2μ+k
1−2μ̄

or

{
μ+ = N0

N0+N1+2k

μ− = N1
N0+N1+2k

(1)

and

p = 1
2 − μ̄, (2)

where μ̄ = (μ+ + μ−)/2 (see the Appendix for the complete
derivation). The parameter p is only relevant for the equili-
bration time and has no effect on the stationary probability
distribution. When μ+ �= μ− (or N0 �= N1), the steady-state
distribution is asymmetric [19] and it is convenient to define
the variable � = μ+ − μ− as a measure of the asymmetry
(see Sec. III D).

The dynamics for both voter and Moran models can be
shown to reach a stationary probability distribution, which
is analytically solvable for the case of a fully connected
network [17], when all dynamical nodes are first neighbors
(ki = N − 1). The symmetry of such topology implies that
every microstate x corresponding to the macrostate with m
nodes at state 1 has the same probability (N

m). The correspond-
ing stationary probability distribution for the macrostate m is
given by ρ(m, N0, N1) [see Eq. (A7) in the Appendix].

The analytical solution for ρ(m, N0, N1) allows the exten-
sion of N0 and N1 to real numbers. Values 0 < N0, N1 < 1
can be interpreted as weak perturbations. Figure 2(a) shows
examples of stationary distributions for symmetric numbers
of external influencers: N0 = N1. There are three distinct
scenarios:
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FIG. 2. (a) Stationary probability distributions of macrostates
for T = 4.0 [blue (light gray)], T = 1.0 [orange (dark gray)], and
T = 0.6 (black). (b) Shannon entropy as a function of T for a fully
connected network with N = 100 nodes and symmetric external in-
fluences (T = N0 = N1). Colored points in the (b) Shannon entropy
function correspond to the curves in (a).

(1) For sufficiently small N0 and N1 [N0, N1 � 1; black
curve in Fig. 2(a)], the population tends to a consensus, where
the stationary distribution has a high probability of having all
the voters for candidate 0 (m = 0) or for candidate 1 (m = N),
and small chances of mixed opinions in the population (0 <

m < N).
(2) For sufficiently large N0 and N1 [N0, N1 � 1; blue

curve in Fig. 2(a)], the population is highly affected by exter-
nal influencers resulting in frequent opinion shifts by voters.
In this scenario, the highest probability is for a population with
coexisting opinions.

(3) For N0 = N1 = 1 [orange curve in Fig. 2(a)], we obtain
the uniform distribution ρ(m, N0, N1) = 1

N+1 for all values of
N , i.e., N0 = N1 = 1 is the transition value of this model. In
this case, all macrostates are equally likely and the system
executes a random walk through the state space. The value
Tc ≡ N0 = N1 = 1 marks the transition between low and high
opinion diversity states independently of network size.

In the language of the Moran model, the first two regimes
correspond, respectively, to strong drift or balance between
drift and mutations [13]. The transition between the low
diversity (consensus) and high diversity (coexistence of opin-
ions) phases is well defined and obtained for N0 = N1 = 1,
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which corresponds to a uniform distribution [orange curve
in Fig. 2(a)]. However, for the asymmetric scenario N0 �= N1

[Fig. 6(a)], it is not clear how to define the transition point
even though the analytical solution for the stationary proba-
bility distribution is exactly obtained [see Eq. (A7)]. Indeed,
unlike the symmetric case where the uniform distribution pro-
vides a clear separation of the low and high diversity phases,
the stationary distribution for the asymmetric case is never flat
in the transition region. To this end, we propose in the next
section an information-theoretic definition of the transition
point, which can be applied to any network structure with
arbitrary external influence parameters.

B. Characterizing the low-high diversity
transition via Shannon entropy

Diversity is a central concept in ecology and the social
sciences. Several indices have been proposed to measure such
complex notion with a single number that could be compared
across different communities. Among these indices, the Simp-
son, the Shannon and Renyi entropies, and Hill numbers are
the most commonly employed [29]. Here we focus on the
Shannon entropy for its connection with physical systems and
for being independent of tuning parameters.

The Shannon entropy [30] corresponding to the stationary
probability distribution of macrostates is given by

S(N0, N1) = −
N∑

m=0

ρ(m, N0, N1) log2[ρ(m, N0, N1)], (3)

where we omit the dependence of S and ρ on N .
To motivate our definition of the high-low diversity transi-

tion point, we first consider the special symmetric case (N0 =
N1). In this case, the entropy S(N0, N1) decreases for larger
values of the external influences N0 and N1. Specifically, we
obtain that ρ(m, N0, N1) → δm,N/2 and S(N0, N0) → 0 in the
limit N0, N1 → ∞ [see Fig. 2(b) and Eq. (A7)]. In this limit
case, the individuals are distributed evenly between the two
alleles (opinions) and the highest genetic diversity (opinion
plurality) within the population is attained.

The entropy S(N0, N1) also decreases as the values of the
external influences N0 and N1 decrease. In particular, the
distribution peaks at the extremes in the limit N0, N1 → 0,
tending to (δm,0 + δm,N )/2 with entropy S(N0, N0) → 1. In
this limit case, the individuals are characterized by a single
allele (opinion) and the population reaches its lowest diversity
(consensus).

At the transition point N0 = N1 = 1 (see Sec. II A), the
distribution becomes flat and the entropy attains its maximum
value of log2(N + 1). The maximum entropy thus interpolates
between the high and low diversity phases.

The above considerations lead us to define the transition
point for general networks with an arbitrary number of exter-
nal influencers as the set of parameters whose corresponding
stationary distribution maximizes the Shannon entropy. For
networks with asymmetric external influences or mutation
rates, it is useful to define the total influence T ≡ (N0 + N1)/2
and the asymmetry parameter � ≡ N1 − N0, analogous to
temperature and magnetic field in the Ising model [31]. For
fixed �, the entropy can be computed as a function of T , and

the transition point T = Tc(�) is determined by maximizing
the Shannon entropy. In Sec. III, we examine the utility of
this definition of the transition point by extensive numerical
simulations. We emphasize that the Shannon entropy based
on the distribution of macrostates is very different from the
usual statistical physics entropy based on microstates. The
difference is apparent for high diversity states, which have
low entropy in our definition but high entropy if computed
with microstates.

C. Mean-field approximation for non-fully-connected networks

While an analytical solution for the stationary probability
distribution can be derived for fully connected (FC) networks
[17] [see Eq. (A7)], analytical solutions for arbitrary net-
works are more difficult to obtain. To this end, a mean-field
approximation for ρ(m, N0, N1) has been proposed [17,32].
The approximation assumes that macrostate distributions for
a given network can be obtained from the analytical result of
the fully connected network [Eq. (A7)] by replacing N0 and
N1 in the non-fully-connected network with effective numbers
of external influencers corresponding to a fully connected
network, Ne f

0 and Ne f
1 .

For regular networks, where all nodes have the same degree
k, the probability Pi that node i copies one of the external fixed
nodes (influencers) is given by Pi(N0, N1) = (N0 + N1)/(k +
N0 + N1). We seek a correction to the numbers of external
nodes that would match this probability to the same probabil-
ity corresponding to a fully connected network of the same
size. Since for the latter we have k = N − 1, then

N0 + N1

N0 + N1 + k
= Ne f

0 + Ne f
1

Ne f
0 + Ne f

1 + N − 1
.

Assuming that the effective external nodes corresponding
to the fully connected network are given by a linear scaling
correction, Ne f

0 = f N0 and Ne f
1 = f N1, to the external nodes

N0 and N1 associated with the regular network, we obtain

f = N − 1

k
.

Using the above scaling correction, the approximate sta-
tionary probability distribution for the k-regular network is ob-
tained by setting ρk (m, N, N0, N1) = ρFC (m, N, Ne f

0 , Ne f
1 ) =

ρFC (m, N, f N0, f N1). We note that the same result holds for
heterogeneous networks by replacing k in the above equations
with the average degree of nodes in the network.

For regular networks with symmetric external
influences (i.e., N0 = N1), we have ρk (m, N, N0, N0) =
ρFC (m, N, Ne f

0 , Ne f
0 ) = ρFC (m, N, f N0, f N0). Since the low-

high diversity transition point for fully connected networks
with symmetric external influences is Tc = Ne f

0 = Ne f
1 = 1,

we obtain the approximate low-high diversity transition point
for the regular network case as follows:

Tc(k) = N0 = N1 = 1

f
= k

N − 1
. (4)

Using the correspondence between the Moran and voter
models in Eq. (1), we find that the critical mutation rate for
regular population structures with symmetric mutation rates
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FIG. 3. Stationary probability distributions of macrostates for (a), (b) three selected values of T and (c), (d) Shannon entropy functions,
for the (a), (c) ring network with N = 101 nodes and (b), (d) lattice network with N = 100 nodes, both with node degree k = 8. External
influences are symmetric (T = N0 = N1). Colored symbols in the Shannon entropy functions correspond to the curves on the top panels.

(i.e., μ+ = μ−) is given as follows:

μc(k) = μ+ = μ− = Tc(k)

2[Tc(k) + k]
. (5)

By using the result for Tc(k) given in Eq. (4), we find that
the mean-field approximation for the transitional mutation
rate is independent of k,

μc(k) = 1

2N
. (6)

In the next section, we test the accuracy of these ap-
proximations by extensive numerical simulations on both
homogeneous and heterogeneous networks.

III. RESULTS

In this section, we study the low-high diversity transi-
tion by numerical simulations in both regular and random
networks. We show that (1) the transition point depends non-
linearly on the degree k of the network; that is, there are
important corrections to the mean-field approximation pre-
sented in Sec. II C, especially for small k; (2) the specific
dependence of the transition point on k also depends on the
underlying network topology; (3) for networks with arbitrary
number of external influencers or mutation rates, the transition
point increases with the extent of asymmetry between the
model parameters; and (4) the transition point increases with
the level of randomness in the network topology.

A. Numerical setup

We first present results for the symmetric case N0 = N1 =
T . We ran simulations of the voter model with varying T
and characterized the transition point Tc as the value that
maximizes the Shannon entropy S(T ) for each network type
and average degree k. The probability p of not changing an
opinion was set to p = 0, since it only affects the equilibration
time and has no effect on the stationary distributions [22].
The dynamics was initially iterated for an equilibration time
of 20 000 steps, after which a sample of macrostates (num-
ber of network nodes in state 1) was collected at intervals
of 10 000 steps to reduce the potential correlation between
measurements. A collection of 10 000 sampled macrostates
was used to estimate the final stationary distribution ρ(m, T ),
with which we were able to calculate S(T ) [Eq. (3)]. The
overall simulation run time after equilibration was 108 time
steps. Repeating the procedure for several values of T , we
obtained the curve S(T ) whose maximizer value provided an
estimate for the transition point Tc. Smooth curves for S(T )
are obtained by averaging over 50 replicas for each value
of T .

B. The interplay between network structure
and stationary distribution

We investigated how the topology of the network alters
the shape of the stationary probability distribution near the
transition. Two network topologies with the same node degree
(k = 8) are explored: a ring network [Figs. 3(a) and 3(c)] and
a square lattice network with periodic boundary conditions
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[Figs. 3(b) and 3(d)]. Results for the probability distribution
ρ(m, T ) and Shannon entropy S(T ) are shown in Figs. 3(a),
3(b) and 3(c), 3(d) respectively.

As shown in Fig. 3, different values of T correspond to
qualitatively different behaviors of the stationary distribu-
tions, varying from low diversity (black) to high diversity
(blue triangles). However, in contrast to what is seen for the
fully connected case [see Fig. 2(a)], the shape of the stationary
distribution corresponding to the low-high diversity transi-
tion is less well defined than for fully connected networks
(see, also, the discussion in Sec. III C). The figure suggests,
however, that the stationary distribution corresponding to the
value of T that maximizes the Shannon entropy interpolates
nicely between the low and high diversity phases, indicating
the usefulness of the information-theoretic method.

C. The effect of network structure and degree on the low-high
diversity transition

Here we explore the effect of network degree on the Shan-
non entropy and the transition point thereof. Figure 4(a) shows
results for the ring network (with N = 101 nodes) with four
different network degrees. We see that both the transition
point Tc and associated maximum entropy value S(Tc) vary
with k. For the fully connected network (k = N − 1), the tran-
sition occurs when Tc = 1 and the probability distribution is
uniform, corresponding to S(Tc) = log2(N + 1) = 6.6724 ≡
Sm, which is the largest possible value for a network with
size N = 101. This implies that any critical value Tc with
S(Tc) < Sm necessarily corresponds to a nonuniform equi-
librium distribution ρ(m). This departure from uniformity is
particularly evident for lower node degrees, where the prob-
ability distributions at the transition point [ρ(m) at T = Tc]
show distinctively nonuniform shapes (see Fig. 3).

To further explore the departure from uniformity at the
transition point, we show in Fig. 4(b) the difference between
the Shannon entropy at the transition point for a fully con-
nected network, Sm, and the estimated maximum Shannon
entropy, S(Tc), for a ring network with varying degrees. We
show that the difference decreases exponentially with the node
degree, reaching the asymptotic value of 0 as k approaches
the value of N − 1. This result suggests that distinctively dif-
ferent stationary distributions that substantially deviate from
uniformity are detected for lower node degrees (k < 20 for the
ring network), while rapid convergence towards the uniform
distribution is obtained for higher node degrees (k ≈ 30 for
the ring network).

In order to better understand the coupled effect of network
topology and node degree on the transition point, we examine
how the node degree affects the transition point in both the
ring and lattice networks. Plots of Tc as a function of k for both
network topologies are shown in Fig. 5(a). The corresponding
values of the transitional mutation rates for the Moran model
μc [see Eq. (5)] as a function of k are shown in Fig. 5(b).

We see that for higher node degrees, the numerical values
of Tc obtained via the Shannon entropy method show good
agreement with the linear mean-field approximation [Eq. (4)],
for both the ring and lattice networks [Fig. 5(a)]. While the
deviations between the numerical Tc and the mean-field results
for lower values of k seem small [Fig. 5(a), inset], these
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FIG. 4. (a) Comparison between the Shannon entropy functions
corresponding to four ring networks with N = 101 and different node
degrees k, as a function of the total external influence T = N0 = N1.
(b) Difference between the Shannon entropy at the transition point
for a fully connected network, SFC (T = 1), and the estimated maxi-
mum Shannon entropy, S(Tc ), for the ring network with varying node
degrees k. Colored points correspond to the Shannon entropy curves
shown in (a).

deviations are amplified when the voter model is translated
into the corresponding Moran model [see Eq. (5)]. Indeed, the
results in Fig. 5(b) indicate that there is a clear discrepancy
between the numerical mutation rates μc for lower values of
k and the mean-field approximation μc = 1/2N derived in
Eq. (6).

We obtain approximate curves relating the transitional mu-
tation rate μc to the node degree k by using the linear fit
between Tc and k [dashed lines in Fig. 5(a)] in Eq. (5) that
maps Tc to μc. The resulting fits between μc and k are shown
in Fig. 5(b) as the black (ring network) and blue (lattice
network) dashed curves. We see that for lower values of k,
the fitted curves show a better agreement with the numerical
measurements compared with the mean-field prediction.

D. The effect of asymmetry

In addition to the symmetric case analyzed above, we also
analyzed the transition point for networks with asymmetric
external influences (i.e., N0 �= N1 or μ+ �= μ−). In this case,
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FIG. 5. Transition point, detected via Shannon entropy, as a function of node degree k, for the ring (N = 101) and lattice (N = 100)
networks. Results for the voter model are shown in (a). The corresponding mapped critical mutation rates of the Moran model are shown in
(b). Error bars on the left correspond to one standard deviation over 50 realizations of the voter model for each value of k and are plotted for
all the points. Error bars for the Moran model are obtained via error propagation using Eq. (5). The inset on the left panel shows that the two
fitted linear curves have nonzero intercept coefficients.

a full characterization of the transition will depend not only
on the average value of the external influence, but also on
the magnitude of the asymmetry. Without loss of general-
ity, we perform the analysis only for the Moran model with
asymmetric mutation rates and fully connected network struc-
ture. We define the asymmetry parameter � = μ+ − μ− and
study the transition point as we vary μ̄ = (μ++μ− )

2 for fixed
values of �. As above, we apply the Shannon entropy to
detect the transition points μ̄c, which mark the transition
between the low and high diversity phases in the Moran
model.

We first focus on analyzing a fully connected network
with a particular asymmetry parameter value, �. In Fig. 6(a),
we show the stationary distributions for three values of μ̄.
Contrary to the symmetric case [Fig. 2(a)], the transition (as
μc increases) between the low diversity stationary distribu-
tion [black line, Fig. 6(a)] and the high diversity stationary
distribution [bell-shaped blue curve, Fig. 6(a)] is not charac-
terized by a uniform distribution, as the asymmetry skews the
distribution for all values of μ̄. The Shannon entropy curve,
however, provides an unambiguous identification of the tran-
sition point [Fig. 6(b)]. In this case, the parameter μ̄c whose
corresponding stationary distribution maximizes the Shannon
entropy is found to be approximately μ̄c = 0.0064, higher
than the value μ̄c = 0.005 corresponding to the symmetric
case. Moreover, the stationary distribution corresponding to
the transition point μ̄c = 0.0064 [orange line, Fig. 6(a)] seems
to nicely interpolate between the low and high diversity phases
(black and blue curves, respectively).

To further understand the effect of asymmetry on the low-
high diversity transition point, plots of the transition point
μ̄c as a function of the asymmetry parameter � are shown
in Fig. 7(a). We see that the transition point μ̄c increases as
the magnitude of the asymmetry � increases. For � ≈ 0,
the derivative of μ̄c with respect to � tends to zero and,
therefore, the transition point does not change significantly for
small values of the asymmetry parameter. Figure 7(b) shows
the Shannon entropy as a function of μ̄c for four different
values of �. We see that increasing the degree of asymme-
try displaces the peak position of the entropy function to
higher values of μ̄c, consistent with Fig. 7(a), as well as to
smaller values of S(μ̄c). Figure 7(c) shows the equilibrium

distributions corresponding to the transition points identified
in Fig. 7(b). Overall, these results suggest that the equilib-
rium distribution, entropy function, transition point μ̄c, and its
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FIG. 6. (a) Stationary probability distributions of macrostates for
three selected values of the average mutation μ̄. (b) Shannon entropy
as a function of the average mutation rate for the Moran model
on a fully connected network with N = 100 nodes and asymmetric
mutation rates. The magnitude of the asymmetry parameter, � ≡
μ+ − μ−, was set to 0.0012. The dotted line in (a) marks the average
value of m of the symmetric case � = 0. Colored points on the
Shannon entropy function [(b), dashed line] correspond to the curves
in (a).
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FIG. 7. (a) Relation between asymmetry (�) and transition point (μc) for a fully connected network with N = 100. (b) Shannon entropy
curves as a function of the average mutation rate corresponding to four values of �. (c) Stationary probability distributions of macrostates at
the transition points. The distribution curves correspond to the same asymmetry parameters � specified in (b). Arrows denote the mean value
of the corresponding distributions.

associated maximum entropy values S(c) may vary signifi-
cantly with the asymmetric parameter �.

E. The effect of network randomness
on the low-high diversity transition

While regular networks serve as useful models for complex
systems, many real networks are neither completely regular
nor completely random. It is therefore interesting to analyze
the impact of network randomness on the transition point. To
this end, we consider small-world networks where random-
ness is controlled by a probability prew of randomly rewiring
each edge of an initially ring network [33]. A distinctive prop-
erty of small-world networks is that the average path length
between nodes rapidly decreases with prew, whereas the clus-
tering coefficient remains virtually unchanged. For simplicity,
we consider the voter model with symmetric parameters, and
an initial ring network with N = 100 nodes and degree k = 6.
Figure 8 shows the transition point Tc as a function of prew.
For prew = 0, we obtain Tc = 0.025 ± 0.001, which is consis-
tent with the results for the ring network [Fig. 3(a)]. On the

FIG. 8. Transition points Tc as a function of the rewiring proba-
bility prew for the voter model on small-world networks. For prew =
0, the network is a ring with N = 100 nodes and k = 6. The transition
points Tc are averages over 50 simulations for each prew, generating
a different randomly rewired network in each case. Error bars corre-
spond to one standard deviation computed over 50 realizations with
different randomly generated networks.

other hand, when prew = 1, the underlying network becomes
completely random, and we obtain Tc = 0.058 ± 0.001 close
to the mean-field approximation Tc ≈ 〈k〉

(N−1) = 0.061.
We see in Fig. 8 that the transition point Tc increases as the

degree of randomness in the network increases. We note that
a similar effect was observed in previous studies, demonstrat-
ing an increase in the critical transition Tc when considering
randomness in the external influence parameters [34]. We can
interpret these results as follows: increasing the randomness in
the network reduces the impact of the external influences by
increasing the critical threshold Tc required for the transition.
The low-high diversity transition in this case can be directly
associated to changes in the characteristic path length of the
network, which decreases as more links are rewired and the
degree of randomness increases. This increased randomness
enables opinions (or alleles) to spread more easily throughout
the network, thus leading faster to low diversity states. This
is consistent with the findings that shorter path lengths fa-
cilitate imitation by other nodes, leading to the rapid spread
of opinions and promoting consensus [6,35]. Although our
discussion here focuses on the voter model, completely anal-
ogous considerations can be made for the Moran model.

IV. DISCUSSION

Understanding the factors that influence the transition be-
tween consensus (low diversity) and plurality (high diversity)
is fundamental in a variety of social and biological contexts.
Here we investigate this transition for the voter and Moran
models on networks, which are subjected to external influ-
encers or mutation rates, respectively. Previous work derived
a mean-field approximation for the equilibrium density of
macrostates for regular networks [21,22]. However, this work
failed to adequately provide a reasonable definition for the
transition point, which can be applied more broadly to arbi-
trary networks with asymmetric external influence parameters
or mutation rates. Here we propose an information-theoretic
method for determining this transitional state by utilizing the
Shannon entropy corresponding to the stationary probability
distribution of macrostates. The transition point is simply de-
fined as the set of parameters whose corresponding stationary
distribution maximizes the Shannon entropy.

Phase transitions for macrostates are found in similar ver-
sions of the voter model [21,36–38]. One way to study these
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transitions is by analogy with ferromagnetic systems, using
traditional tools from statistical mechanics. For the model
studied here, the analog of the magnetization is always a
smooth function of the external parameters and no sharp tran-
sition occurs between the low and high diversity phases for
finite-size systems. In the limit N → ∞, the critical point goes
to zero, indicating that any external perturbation leads to some
degree of diversity. An alternative way to characterize the
transition between the phases is by looking at the point where
the distribution of macrostates changes from unimodal (high
diversity) to bimodal (low diversity) [27]. This definition does
not coincide with the one proposed here, as can be seen from
Fig. 6(a) where the maximum of the Shannon entropy is for
μ̄ = 0.0064, which still represents a unimodal distribution.
A more dramatic example occurs for the star network [39],
where the high to low diversity transition is rather different.
In this case, the single peak of the distribution of macrostates
in the unimodal regime splits in two as the external influence
is decreased (see Fig. 3 of [39]). For N = 100 nodes and
T = N0 = N1, the point of highest entropy is achieved for
T = 0.32, whereas the point where the peak splits in two is
T = 2.8, showing that the two metrics of transition are indeed
measuring different properties of the system.

Our information-theoretic approach offers a natural way to
define the transition point for finite-size systems with arbitrary
network topology and asymmetric external influences. We
demonstrated the usefulness of this approach by extensive nu-
merical simulations on both homogeneous and heterogeneous
networks. These results show that the low-high diversity tran-
sition is controlled by a variety of factors, including the
network topology, average node degree, degree of asymmetry
in external influence parameters, and level of randomness in
network topology. In particular, we report an intriguing rela-
tionship between the characteristic path length of small-world
networks and their corresponding transition points.

In biological systems, low diversity (and consensus) is
associated to monomorphism, and high diversity (and co-
existence of opinions) is associated to polymorphism. In
nonstructured populations (fully connected network), the tran-
sition point corresponds to the mutation rate of 1/2N [17],
as predicted by the mutation-drift balance [13]. For popula-
tions structured in regular network topologies, the mean-field
approximation for the transition point in the voter model is
Tc(k) = k/(N − 1). This maps to μc = 1/(2N ) in the Moran
model, which is identical to the value for fully connected pop-
ulations. However, in biological systems, polymorphisms can
be promoted by structured populations, especially those that
are structured by geography [40–42], decreasing the critical
mutation rate required for the low-high diversity transition.
This expectation is verified by our simulations, which show
that the critical mutation rate μc (detected by the Shannon
entropy criterion) is dependent on the average node degree of
the network, counter to the prediction of the mean-field theory.
More specifically, we find that the critical mutation rate for
the Moran model is well described by μc = ak+b

2(a+1)k+b , where
a and b are fitted parameters (see Fig. 5).

We also demonstrated that the degree of asymmetry in
external influence parameters leads to skewed stationary prob-
ability distributions, emphasizing the inadequacy of using the
uniform probability distribution as a criterion for the tran-

sition. Skewness of the probability stationary distributions
is particularly relevant in small natural populations, which
can remain monomorphic for long periods before a mutant
appears.

Our choice of the Shannon entropy as a diversity measure,
as we noted before, is not unique. Thus, comparing the various
measures with respect to their ability to identify the high-
low diversity transition point is of interest in itself and will
be addressed in future work. Another line of investigation
concerns different network topologies (particularly modular
networks) and their effect on the transition. For nonregular
networks, there is no exact mapping between the voter and
Moran models. It would thus be interesting to understand
how their dynamics might diverge for more complex network
topologies. This could help to elucidate the interplay between
geographic population structures and the critical mutation rate
required for the existence of polymorphisms.
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APPENDIX: MASTER EQUATIONS

In this Appendix, we briefly review the derivation of the
master equations for the Moran and voter models. We call xi ∈
{0, 1} the state of individual i and x = {x1, . . . , x j, . . . , xN } the
state of the population. We recall that in both models, the state
of a single individual is allowed to change at each time step.
This implies that there are only two ways to reach a given state
x at time t + 1: (i) either the system is already at x at time t or
(ii) the state at time t differs from x by a single individual. We
define the state that differs from x by the state of individual
j as x j = {x1, . . . , 1 − x j, . . . , xN }. The master equation can
now be written as.

Pt+1(x) = Pt (x)�(x → x) +
N∑

i=1

Pt (xi )�(xi → x), (A1)

where Pt (x) indicates the probability of finding the population
in state x at time t and �(a → b) is the transition probability
from state a to state b.

In the Moran model, a step of the dynamics consists in
selecting a random (focal) individual and replacing it with its
offspring with another randomly selected (partner) individual.
The offspring may inherit the state (allele) of the focal individ-
ual or the partner with equal probability. The inherited allele
also has a probability to mutate. Here we shall exchange the
word “individual” with “network node” and also use the term
“copy the state” for “inherit the allele.”

The transition probability �(x → x) of remaining in the
same state is given by either copying the state of the focal
node (which then cannot mutate) or the state of a mating part-
ner with the same state of the focal node (without mutation)
or the opposite state with mutation. The contribution to the
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probability for copying the focal node is

� f (x → x) =
N∑

i=1

1

N

1

2
[xi(1 − μ−) + (1 − xi )(1 − μ+)] = 1 − 1

2N

N∑
i=1

[1 + xiμ− + (1 − xi )μ+], (A2)

where μ− is the mutation probability from state 1 to 0 and μ+ from 0 to 1. This represents the probability of picking individual
i (1/N) times the probability of copying its state (1/2), summed over all individuals.

The contribution coming from copying the mating partner follows the same idea, but now involves the adjacency matrix to
select connected neighbors:

�m(x → x) = 1

2N

N∑
i=1

1

ki

{
N∑

j=1

Ai j |1 − xi − x j |[xi(1 − μ−) + (1 − xi )(1 − μ+)]

}

+
N∑

j=1

Ai j |xi − x j |[xiμ+ +(1 − xi )μ−]

= 1

2N

N∑
i=1

1

ki

ki∑
j=1

{Ai j |1 − xi − x j |(1 − 2μ̄) +ki[xiμ+(1 − xi )μ−]}, (A3)

where we defined μ̄ = (μ+ + μ−)/2.
The transition probability �(xi → x) also has two contributions. In both cases, the node whose state differs has to be selected

(1/N). If the state of the focal node is copied, then it has to mutate,

� f (xi → x) = 1

2N

{
xi

iμ− + (
1 − xi

i

)
μ+

}
. (A4)

The second possibility again comes from copying the mating partner and allowing or restricting mutations accordingly,

�m(xi → x) = 1

2N

1

ki

{
N∑

j=1

Ai j

∣∣xi
i − x j

∣∣[xi
i (1 − μ−) + (1 − xi

i )(1 − μ+)
] + Ai j

∣∣1 − xi
i − x j

∣∣[xi
iμ+ + (

1 − xi
i

)
μ−

]}

= 1

2N

1

ki

{
N∑

j=1

Ai j |1 − xi − x j |[(1 − xi )(1 − 2μ̄) + xi(1 − 2μ̄)] + ki[(1 − xi )μ+ + xiμ−]

}
.

Putting these terms together and simplifying, we find the master equation

Pt+1(x) = Pt (x) + Pt (x)
(1 − 2μ̄)

2N

∑
i

1

ki

{∑
j

Ai j |1 − xi − x j | − ki − 2μ+ki

1 − 2μ̄
xi − 2μ−ki

1 − 2μ̄
(1 − xi )

}

+ (1 − 2μ̄)

2N

∑
i

Pt (xi )

ki

{∑
j

Ai j |1 − xi − x j | + 2μ+ki

1 − 2μ̄
(1 − xi ) + 2μ−ki

1 − 2μ̄
xi

}
. (A5)

A similar procedure can be applied for the voter model dynamics. An important difference appears from the fact that the
external influence, given by nodes N0 and N1, only affects the system when the node copies the state of the partner. In the
language of Moran, this would be as if “mutations” occurred only if the state of the mating partner is selected. Another difference
comes from the parameter p, which defines the chance of the system remaining unchanged at that time step. This parameter only
changes the timescale for reaching the stationary probability distribution, not the distribution itself. The master equation for the
voter model is given by

Pt+1(x) = Pt (x) + (1 − p)

N
Pt (x)

N∑
i=1

1

ki + N0 + N1

{
N−1∑
j=1

Ai j |1 − xi − x j | − ki − N0xi − N1(1 − xi )

}

+ (1 − p)

N

N∑
i=1

Pt (xi )

ki + N0 + N1

{
N−1∑
j=1

Ai j |1 − xi − x j | + N0(1 − xi ) + N1xi

}
. (A6)

The solution for the fully connected case of the voter model with external influencers can be found in [17]. The analytic
stationary probability distribution is given by

ρ
N0,N1
FC (m) = AN0,N1

N

�(N1 + m) �(N + N0 − m)

�(N − m + 1) �(m + 1)
, (A7)
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where

AN0,N1
N = �(N + 1)�(N0 + N1)

�(N + N0 + N1)�(N1)�(N0)
.

The gamma functions allow the extension of the model to real values of N0 and N1, representing continuous ranges of external
influences.
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