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Abstract. Complex systems experience dramatic changes in behavior
and can undergo transitions from functional to dysfunctional states. An
unstable system is prone to dysfunctional collective cascades that result
from self-reinforcing behaviors within the system. Because many human
and technological civilian and military systems today are complex sys-
tems, understanding their susceptibility to collective failure is a critical
problem. Understanding vulnerability in complex systems requires an
approach that characterizes the coupled behaviors at multiple scales of
cascading failures. We used neuromorphic methods, which are modeled
on the pattern-recognition circuitry of the brain and can find patterns
in high-dimensional data at multiple scales, to develop a procedure for
identifying the vulnerabilities of complex systems. This procedure was
tested on microdynamic Internet2 network data. The result was a generic
pipeline for identifying extreme events in high dimensional datasets.

Keywords: complex systems, vulnerability detection, stability and in-
stability, high-dimensional, dimensionality reduction, neuromorphic
methods, self-stabilizing systems.

1 Introduction

High dimensional complex systems are comprised of large numbers of interde-
pendent elements [9]. When high dimensional systems perform critical tasks, the
task is shared by and dynamically allocated among the components. The ability
to distribute function dynamically enables robust and self-stabilizing function in
a highly variable environment, but breaks down when collective loads are exces-
sive, or when local failures or allocation process failures lead to cascading failures
of large parts of the system as a whole. Thus, interdependence is necessary for
function, but at the same time leads to dysfunctions associated with collective
breakdowns. Because collective failures are dynamic and emergent, it is essential
to identify when they occur and how to prevent them for the effective operation
of a large number of critical systems.

Predicting the conditions of collective failures typically requires extensive
study of the system and an understanding of both general dynamical charac-
teristics and specific structural details. This is apparent in the limited predic-
tion ability of such well-known collective failures as traffic jams and gridlock in
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road and highway systems. Similar issues arise in many much less visible sys-
tems, including power grids; water supply systems; communication networks (the
internet); transportation networks (airlines, trains, shipping, etc); the global fi-
nancial system; manufacturing, food and other commodity supply systems; and
social networks and organizations. The potential impact of catastrophic failures
in such systems has led to interest in developing detailed models of the systems,
but not principles for evaluating system vulnerability [16,37].

Generally, interactions among a system’s elements can generate collective dys-
functions, and operating conditions can trigger dramatic changes in the system’s
overall behavior, such as cascading failures. When a system is highly susceptible
to behavioral changes of this sort, it is functionally unstable [20,29].

Vulnerable systems are likely to transition from stability to instability. Like a
pencil on its tip, a vulnerable system will collapse if it experiences a sufficiently
large deviation. By contrast, a stable system can restore itself to its equilibrium
state when perturbed, like a pendulum. A system that is normally stable can be-
come functionally unstable due to changes in global conditions or in relationships
between the system’s constituent elements.

Understanding the vulnerabilities of complex systems is a critical societal
problem because of the many human and technological systems today that rely
on distributed function and that can be characterized as high dimensional com-
plex systems. Currently, responses to failure are reactive instead of proactive
because we do not have a generic pipeline for analyzing high dimensional sys-
tems and anticipating their vulnerabilities. The goal of this paper is to develop a
method for characterizing and anticipating extreme behavior and system failure,
and to test it on a specific case study.

2 Internet2

Transitions from stability to instability are manifest in the Internet, which makes
it a suitable prototype case for studying the dynamical properties of high dimen-
sional systems [11,21,30,32,36]. A central function of the Internet is to enable
any node to communicate with any other node transparently and without signif-
icant delays or lost communication. The Internet is designed as a self-stabiizing
system [6], returning by itself to normal operation despite data errors and equip-
ment failure [31] and despite dynamical deviations from functional states [14].
Nonetheless, the Internet architecture sometimes exhibits collective behaviors
that make transparent end-to-end connectivity impossible. Such aggregate col-
lective phenomena include cascading failures [20,22,29], the largest of which have
been associated with worm attacks [12,35,38], and “route flapping,” which occurs
when a router fluctuates quickly between routes without settling into an effec-
tive routing pattern [24]. Other such phenomena include bottlenecks, storms,
and collective oscillations[10,17,25].

A suitable prototype case for studying the dynamical properties of the Inter-
net is the Internet2 network, backbone hubs of which are depicted in Figure 2.
Internet2 is a collaboration of research institutions and companies that require
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Fig. 1. Depiction of the pipeline. Each orange arrow represents one phase of the four-
step process. Step 1, the sensor process, converts high dimensional heterogeneous data
into a structured data stream representation. Step 2, the attention process, determines
an attention trigger, extracts high-dimensional event data, and applies an alignment
algorithm to align events in time. The result is a high-dimensional matrix. Step 3, the
pattern process, employs pattern-discovery algorithms (gray arrow) to convert the high
dimensional input into a lower-dimensional representation. Step 4, the interpretation
process, characterizes the domains in the lower-dimensional representation space and
makes it possible to distinguish normal system operations from system vulnerability
or failure.

Fig. 2. Backbone hubs on the Internet2 network and traffic flow links between them
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high-speed network infrastructure for communication. The Internet2 network is
similar to the Internet in design and function, but smaller. While Internet2 is
partially isolated from the Internet, it uses the same protocols for routing and is
large enough to manifest collective dysfunction [18]. By design, massive volumes
of network data can be collected through protocols built into the network, so
extensive data about traffic on Internet2 has been archived [1,2,3,4,5,13]. The
availability of historical data makes Internet2 a suitable laboratory for studying
the collective failure of high-dimensional systems [23,33,39].

Internet2 data archives include logs of routing changes in the network issued
by its communications protocol, Border Gateway Protocol (BGP) the same
protocol used by routers on the Internet [34]. Under BGP, each node sends
updates to its neighbors about which routes are most efficient for transmitting
data. As the traffic demand changes, routes can become overloaded. Delays are
detected by network routers that read messages from other routers. When delays
are detected, BGP messages are sent between routers so that they change their
routing tables [34].

Consider what might happen during a speech given by the President that
is broadcast via a live video feed from Washington and is of interest to many
people near Kansas City. Data packets may be transmitted from Washington,
through Atlanta and Houston, to Kansas City (see Fig. 2). The resulting spike
in network traffic may impede traffic from Indianapolis to Washington, which
also passes through Atlanta.

To overcome this problem, Indianapolis traffic may be rerouted through
Chicago and New York. A message from Atlanta to Indianapolis forcing this
routing change constitutes a BGP update. The number of updates per minute
varies from as little as a few dozen to several thousand depending upon the
volume and nature of network activity. System failure occurs if the network
experiences unusually high update volumes without settling into an effective
routing pattern.

A simple example of system failure is one that occurs in self-generated traffic
and route oscillations, where if one route is overloaded, the system dynamically
reroutes traffic. However, rerouted traffic may cause overloading and delays in
the new route while leaving the older route underutilized. Subsequent rerouting
may exacerbate this effect by inducing routing oscillations that never achieve
effective system utilization.

Update logs can in principle enable an observer to understand the network’s
dynamics. However, a single update, or even a large number of updates, are not
indicative of failure. Aggregate behaviors must be characterized using patterns in
the BGP traffic that enable us to distinguish poor resource utilization and failed
communications from effective use of bandwidth and successful communications.

BGP updates are one of several types of records in the Internet2 archives.
A central problem in developing a model that reveals the network’s collec-
tive behaviors is determining which data best represent the system and which
can be ignored. Additionally, understanding vulnerabilities in Internet2 requires
an approach that recognizes the consequences of dependencies between nodes.
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Traditional analysis, which focuses on individual variables and pair-wise correla-
tions, is not sufficient to capture the system’s collective behaviors and does little
to help discriminate between useful and irrelevant data streams. Furthermore,
collective behaviors at multiple scales should be described by k-fold correlations
[7,8,15,26,27] that would be difficult to evaluate directly.

3 Neuromorphic Method

We have developed a process for identifying extreme behavior in high-dimensional
systems using neuromorphic pattern discovery methods. This process character-
izes the differences between patterns of collective behavior and uses them to
recognize instability.

Neuromorphic pattern discovery methods are designed to mimic the nervous
system’s pattern-recognition circuitry using computer algorithms. Our approach
consists of four stages: sensor, attention (event detection), pattern finding, and
interpretation (classification). Each of these stages is analogous to a specific
neurobiological function.

This report describes the successful implementation of our approach but does
not describe the multiple methods that have been studied in order to develop
this approach [9,28]. These studies investigated both conceptual and practical
aspects of computational analysis. Some of the implementations tested in order
to identify the strategy used and its refinement were performed on systems other
than the Internet 2 data reported here.

Optimization of the method has been performed at a global rather than a
local scale, which ensures that the neuromorphic method retains essential infor-
mation while eliminating unnecessary or redundant information at each stage of
processing. That the method does not require optimization at each stage is crit-
ical to its widespread applicability. Thus, in this method, no attempt is made at
each phase of the process to isolate a single correct output, because a multiplic-
ity of potential outputs can, after the interpretation process has been applied,
result in the same conclusion.

We ensure that the patterns discovered by the process are meaningful by
requiring that we retain key representative elements of the data stream. High
dimensional data is retained until the penultimate stage. Information selection
at earlier stages is designed to retain a representation of the coupled dynami-
cal processes that underly system failure. The relative timing of events among
multiple units is a critical aspect of the information retained that is often dis-
carded in other forms of analysis. The relative timing data contains the high
order correlations among the components of the system.

We overcome the difficulty faced by pattern recognition methods in resolving
patterns where multiple instances of the same phenomenon do not appear the
same in the input due to transformations such as time or space translation. To
address this limitation, we treat the overall collective dynamics of the system
as a single entity. We implement a symmetry-breaking process that aligns the
events with each other in time. Such a symmetry-breaking process could also
have been done in space, but was not necessary for this application.
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3.1 Sensor Process

The sensor process refines large volumes of variously structured raw data into
a well-defined and standardized high-dimensional parallel data stream. This is
analogous to the brain converting compressions and rarefactions of air molecules
against the eardrum, or light waves reaching the retina, into neural signals. The
biological examples demonstrate that this stage of the process is system specific–
i.e. the nature of the originating data is specific to the system being considered
(sound or light) and the purpose of the sensory stage is to use a system-specific
mechanism to convert the available information into a formatted data stream.

The 10 TB of available data for Internet2 were refined by a computer program
that processed raw network data into a dynamic measure of network interac-
tions while dealing with complications like data inconsistencies and gaps. The
available data consist of second-resolution logs of various network statistics, in-
cluding netflow data containing a record of IP flows passing through each router,
throughput data consisting of records of the average rate of successful message
delivery, and usage data comprised of logs of system load for individual machines
at each node. The sensor program parsed these data and returned a time series
of the most representative aspects of the data set for the collective behavior with
which we are concerned — a data stream representing the existence of a change
in the router table at a particular router of the system.

3.2 Attention Process

The next phase of processing requires that we specify a “trigger,”—a dynamic
feature of large excursions that we can use to identify when an extreme event
may be happening. The trigger is tuned using historical data to maximize the
number of events identified by the event detection process while excluding false
positives from the data set.

The trigger is based on an aggregate measure of the system’s behavior over
space and time – in the case of Internet2, across major backbone nodes. Event
data is extracted from the data stream using a program that monitors this
aggregate measure. A deviation of the measure from a background value well
above its statistical variation signals an event – we looked for deviations larger
than 3 standard deviations above the moving average – at which point the event’s
data stream is extracted. Figure 3 is a visualization of an aggregate measure of
the behavior of the system, in which each bar represents the number of update
messages per day over seven months. The figure shows that update spikes are
an easily-identified first approximation for what might constitute an appropriate
trigger.

The next phase is to align the event data; this is an essential part of the
attention process because it enables comparison of the intra-event dynamics of
different events. An algorithm extracts a 40-hour window of data surround each
event and examines it to identify the period within that window that best repre-
sents aberrant network activity, and then shifts each window in time according to
the location of the most active period. In the example in Figure 4, the windows
have been shifted to align the largest spikes within the window.
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Fig. 3. BGP Updates per day over seven months at an Internet2 node; x-axis is days
since the start of 2008. Arrows indicate days that are visually identifiable as “spikes”
in the number of BGP updates. The attention process in a neuromorphic algorithm
must identify the quantitative signature of such anomalies and use it to extract a data
stream that represents the network’s dynamical properties.

The alignment process outputs a set of 15,000-element vectors, one vector per
event. Each vector represents the behavior at every node over a specific time
frame, with the salient features of each event aligned within the output matrix.

3.3 Pattern Process

To identify details of the dynamics of large excursions, we employ a wide array
of pattern finding algorithms designed for processing high dimensional, high
volume data. Many of these algorithms reduce the dimensionality of the system
description by discarding dimensions that are not essential for characterizing
the system’s overall behavior. A common approach to dimensionality reduction
is to assume that the data lie on an embedded non-linear manifold within the
high-dimensional space defined by the complete dataset. While some techniques
give a mapping from the high dimensional space to the low dimensional space,
others provide only a visualization of the low-dimensional data.

Both types of algorithms are designed to maximize coverage of the lower di-
mensional representation space and minimize the distortion of the projection.
Dimensionality reduction algorithms map high-dimensional data vectors ξi in
an input space of dimension n to lower-dimensional representation vectors xi

in an output space of dimension m << n. The algorithms seek to preserve the
distances between pairs of points. Given metrics dξ and dx that measure dis-
tances between high-dimensional vectors and low-dimensional vectors, respec-
tively, the distances dx(xi, xj) approximate the distances dξ(ξi, ξj). At the same
time the algorithms try to maximize a measure of spatial covering so that the
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Fig. 4. Aligning events using their dynamic profiles. The window at left depicts the
dynamic profile of an Internet2 node over several months. The windows at right depict
the profiles of individual days during the month that were flagged during event detec-
tion. The alignment process determines what significant characteristic of each event
best correlates to significant characteristics of other events and aligns them using the
resulting criterion.

Fig. 5. Dimensionality-reduced representation of event vectors. Each point represents
an event. This plot represents an attribute space of event parameters found to be
significant by the dimensionality reduction algorithm. Specifically, x1 and x2 are the
two most prominent lower-dimensional parameters. Note the two extreme events, which
appear separate from the large number of rerouting events that did not destabilize the
network.
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representation vectors xi represent as much of the high dimension variation in
the lower dimension as possible.

One technique for maximizing spatial covering employed by some dimensional-
ity reduction algorithms is to use an intermediary transformation from the input
space to a feature space in which the underlying structure of the input vectors
is more visible. This enables non-linear methods to be incorporated in an other-
wise linear process. One such method is Kernel Principal Component Analysis
(Kernel PCA), in which the linear operations of PCA are applied to the feature
space with nonlinear mapping. Given a set of input data points ξi, i = 1, 2, . . . , n
in the n-dimensional input space, we would first nonlinearly transform the ith

input vectors ξi into a point Φ(ξi) in an NH dimensional feature space H where
each

Φ(ξi) = (φ1(ξi), . . . , φNH (ξi)) ∈ H, i = 1, 2, . . . , n. (1)

and then use PCA in the feature space H [19]. Carrying out linear PCA in the
feature space then yields a presumably lower-dimensional distance-preserving
representation of the input vectors xi, i = 1, 2, . . . , m, with m < n. The method
we employed was inspired by Kernel PCA; the nonlinear sensor and attention
processes primed the input space for dimensionality reduction, after which linear
methods were sufficient for identifying structure in the data.

The results of nonlinear dimensionality reduction are visualizations of the high
dimensional data in a lower dimensional space that make it possible to uncover
patterns within the data using the coordinates of the resulting points in the low
dimensional space. Figure 5 depicts a scatter plot generated using the results of
dimensionality reduction.

3.4 Interpretation Process

The pattern finding process outputs a representation of the lower-dimensional
space to which high-dimensional input was mapped. Just as in a neural process-
ing system, interpration of this lower-dimensional representation must be guided
by an understanding of the consequences of previous events, either by studying
long term feedback or by training from a previous generation. Similarly, the in-
terpretation of the events in the neuromorphic system can be guided by human
interpretation. Since the dimensionality of this output space is small, our own
interpretive processes can identify the relevant regions of the space from the
historical data.

Extreme events appeared separate from the cluster of background events in
the lower-dimensional output space. They are visible in Figure 5 in the upper-
left. To determine what property of these events separates them from the trend,
we used radar charts that illustrated the node-to-node variation of each event
and temporal plots to visualize the dynamics of the activity.

Figure 6 contains two such plots, along with temporal plots and indications of
where each event falls in Figure 5. The radar chart insets indicate the magnitude
of each event at each node. Clearly visible in the first of the two events, which
manifested at every node but was aberrantly large at only one node, are several
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Fig. 6. Dynamic profiles for the two events. The insets indicate the magnitude of each
event at each node. Also indicated is where each event appeared on the dimensionality-
reduced plot.

distinct spikes in network activity. This repeated and persistent aberrant activity
is a signature of systemic instability. The second event depicted consisted of
nearly eight hours of large numbers of updates. The entire network was forced
to completely rewire itself every 30 seconds. This is precisely the type of system
failure our method is designed to detect.

The results of our analysis prompted us to revisit the theoretical nature of
vulnerability and failure. Within the context of vulnerable systems, large cas-
cades are common rather than isolated events. System failure is a persistent
and recurrent cascade. Thus, both vulnerability and failure can be identified as
persistent large deviations from normal behavior.

Our analysis shows that self-stabilizing systems can be vulnerable to collec-
tive dysfunctions. While the routing systems can adapt rapidly to changes in
the network and the dynamics of demand, there are conditions of the system
or the demand on the system that can lead to cascades that cause dysfunction.
Recognizing these conditions and detecting extreme events is essential to ex-
panding the domain of effective function.

Our processing pipeline is well-suited to detecting extreme events because of
the attentional trigger which aligns events according to their largest excursion.
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All events where the large excursion is sufficiently isolated from other large events
will appear much more similar to each other than they do to events for which
multiple large excursions occur over time and across the network. This ensures
that the pattern recognition algorithms will be able to distinguish between the
two types.

Our method sheds light on the dynamical characteristics of extreme events
and explains why our processing pipeline can distinguish extreme events from
those that do not result in system failure. This new insight provides a general
explanation of how and why real-time detection of extreme events is possible.

4 Conclusion

We have developed a neuromorphic information processing pipeline that can
characterize the vulnerability of complex systems. The process consists of ex-
tracting a dynamic measure of network activity and processing the resulting time
series to find patterns of collective behavior. The process succeeded in identifying
extreme events that are distinct from high demand but otherwise effective system
activity. Novel spatiotemporal analysis and dimensionality reduction techniques
made this result possible. The pipeline can be used quite generally for analyzing
high-dimensional time series and isolating extreme events in real world communi-
cation, transportation and economic systems. This system can be combined with
real-time system monitoring of data streams to identify dysfunctional behaviors
and characterize vulnerabilities or system instabilities as they occur.
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