
C

D
a

b

a

K
O
I
E
S
S
N
F

1

i
a
A
C
a
a
o
E
h
m
p
n
f
t
d
l

M

0
d

Social Networks 33 (2011) 219– 230

Contents lists available at ScienceDirect

Social  Networks

journa l h o me  page: www.elsev ier .com/ locate /socnet

orporate  competition:  A  self-organized  network

an  Brahaa,b,∗, Blake  Staceya, Yaneer  Bar-Yama

New England Complex Systems Institute, Cambridge, MA, United States
University of Massachusetts, Dartmouth, MA, United States

 r  t  i  c  l  e  i  n  f  o

eywords:
rganizational networks

nterfirm competition
conomic geography
ocial networks
patial networks
etwork dynamics
irm size dynamics

a  b  s  t  r  a  c  t

A  substantial  number  of  studies  have  extended  the  work  on universal  properties  in  physical  systems
to  complex  networks  in social,  biological,  and  technological  systems.  In this  paper,  we  present  a com-
plex  networks  perspective  on  interfirm  organizational  networks  by  mapping,  analyzing  and  modeling
the  spatial  structure  of a large interfirm  competition  network  across  a  variety  of  sectors  and  industries
within  the  United  States.  We  propose  two  micro-dynamic  models  that are able  to  reproduce  empiri-
cally observed  characteristics  of  competition  networks  as a  natural  outcome  of  a  minimal  set  of  general
mechanisms  governing  the  formation  of  competition  networks.  Both  models,  which  utilize  different
approaches  yet  apply  common  principles  to  network  formation  give  comparable  results.  There  is  an
asymmetry  between  companies  that  are  considered  competitors,  and  companies  that  consider  others  as
their competitors.  All  companies  only  consider  a small  number  of other  companies  as competitors;  how-
ever,  there  are  a few companies  that are  considered  as  competitors  by  many  others.  Geographically,  the

density  of  corporate  headquarters  strongly  correlates  with  local  population  density,  and  the  probability
two  firms  are  competitors  declines  with  geographic  distance.  We  construct  these  properties  by  growing  a
corporate  network  with  competitive  links  using  random  incorporations  modulated  by  population  density
and geographic  distance.  Our  new  analysis,  methodology  and  empirical  results  are  relevant  to various
phenomena  of  social  and  market  behavior,  and  have  implications  to research  fields  such  as economic

iolog
geography,  economic  soc

. Introduction

In recent years, major advances have been made in understand-
ng the structure and dynamics of real-world social, biological,
nd technological complex networks (Albert and Barabasi, 2002;
maral et al., 2000; Boccaletti et al., 2006; Costa et al., 2007).
omplex networks theory has also contributed to organizational
nd managerial environments, where new theoretical approaches
nd useful insights from application to real data have been
btained (Braha and Bar-Yam, 2007; Amaral and Uzzi, 2007;
. Lee et al., 2006). Through theory and experiment, these studies
ave characterized the structural properties of such networks, their
echanisms of formation, and the way these underlying structural

roperties provide direct information about the characteristics of
etwork dynamics and function. Of particular interest are scale-

ree networks where the degree (i.e., the number of nodes adjacent

o a node) is distributed according to a power law or a long right tail
istribution. Such networks have characteristic structural features

ike “hubs”, highly connected nodes (Barabasi and Albert, 1999),

∗ Corresponding author at: New England Complex Systems Institute, Cambridge,
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E-mail address: braha@necsi.edu (D. Braha).

378-8733/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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y,  and  regional  economic  development.
© 2011 Elsevier B.V. All rights reserved.

features which cause them to exhibit super-robustness against
failures (Albert et al., 2000; Cohen et al., 2000) on the one hand,
and super-vulnerability to deliberate attacks and epidemic spread-
ing (Pastor-Satorras and Vespignani, 2002) on the other. Modeling
real world large interfirm competition networks, which capture
the coupling between economic units, is important to understand-
ing the complex dynamics, robustness, and fragility of economic
activity.

Here, we  use network methodology to analyze and model
the spatial structure of a large competition network, representing
competitive interactions among firms within the United States. We
find that the framework of geographic complex networks, mainly
applied to natural and engineered systems, can be extended to
capture the underlying structure and micro dynamics of interfirm
competition, a system of heterogeneous economic units involved
in strategic interaction. We  extend the understanding of organiza-
tional problems by following a complex systems approach (Albert
and Barabasi, 2002; Boccaletti et al., 2006; Braha and Bar-Yam,
2007, 2004; Amaral and Uzzi, 2007; Granovetter, 1985). To study
complex systems, comprising many interacting units, we first

look for robust empirical laws (often guided by prior knowledge)
that describe the complex interaction followed by theoretical
models that help understand and reproduce the main properties
of the real world system. Our study combines several empirical

dx.doi.org/10.1016/j.socnet.2011.05.004
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:braha@necsi.edu
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easurements of competition networks and theoretical models,
hich are then validated and informed by the actual measure-
ents. We  focus initially on four fundamental properties: node

egree distributions, the spatial distribution of firms, the relation-
hip between connectivity probability and geographic distance,
nd edge length distribution. We  then propose two simple mod-
ls where new firms are added to the 2D surface of the Earth,
nd become connected to existing firms following cumulative
dvantage rules that are also dependent on geographic distance.
e show that the models are able to reproduce the observed
easurements remarkably well.
We represent corporate entities by network nodes, and we

onnect nodes using directed edges following the competitive rela-
ionships of the firms involved. The competitive ties between pairs
f firms can be defined in two ways: The first approach is based on
efining competition ties in terms of the potential for two  firms
o compete. According to this view, two companies are rivals if
hey are involved in direct or indirect competition for customers
hat have brand preferences for products (or services) that per-
orm the same function, or products (or services) that are close
ubstitutes for each other. The potential for two firms to compete
s also defined in terms of the degree of intersection or overlap
f the set of resources and environmental conditions that sustain
he functioning of firms (Sole and Bascompte, 2006; Hannan and
arroll, 1992; Podolny et al., 1996; Ruef, 2000), such as financ-

ng on the capital markets. Following this approach, firms may
ompete even though they lack awareness of one another’s exis-
ence and therefore cannot take one another’s actions into account
Sole and Bascompte, 2006). The second approach to competition,
nd the one we mostly use in this paper, views competition as a
roperty of observable and consciously recognized social ties by
he firms about the relation (Granovetter, 1985). According to this
pproach, competitive ties among pairs of firms are based on the
erspective, perceptions and evaluations held by the firms about
he competition relations. Understanding the structure of the entire
etwork of perceived competitive ties among firms is valuable for
everal reasons. It has been observed that participants in the market
now each other; and, moreover, in formulating their competi-
ive strategies (e.g., price cutting) participants monitor and take
nto account the actions and intentions of only a limited number
f perceived others (Gripsrud and Gronhaug, 1985; Carroll, 1985;
aum and Mezias, 1992; Porac et al., 1995; Baum and Haveman,
997). The perceived competitive ties can be measured in a vari-
ty of ways (also used in this paper), including archival records
e.g., public filings, annual reports, and newspapers), interviews, or
peeches.

While most network-theory research has concerned nodes and
onnections without any reference to an underlying space, in many
eal-world networks nodes and links are embedded in a physi-
al space. In such networks, the interactions between the nodes
epend on the geometrical distance between nodes; often, edges
end to link nodes that are close neighbors. Examples include nat-
ral, engineered, and social networks (Hayashi, 2006) such as the
hysical arrangement of the Internet (Waxman, 1988; Yook et al.,
002; Lakhina et al., 2002; Gastner and Newman, 2006), road and
irline networks (Gastner and Newman, 2006; Guimerà et al., 2005;
orta et al., 2006), broadcast signaling networks (Lim et al., 2007),
ower grids (Albert et al., 2004), mobile communication networks
Lambiotte et al., 2008), and neuronal networks (Eguıluz et al.,
005). In real-world systems, the probability that two  nodes are
onnected has been seen to decrease as a power law (Yook et al.,
002; Lambiotte et al., 2008; Liben-Nowell et al., 2005) or an expo-

ential (Lakhina et al., 2002) of the distance between them. Other
esearch has characterized the geographical deployment of nodes
n two or three-dimensional Euclidean space. For example, Yook
t al. (2002) and Lakhina et al. (2002) have shown that in techno-
ks 33 (2011) 219– 230

logically developed countries the Internet demand (measured by
router density) is proportional to the population density. Several
models of spatial networks have been proposed in the complex
systems literature among which are placing nodes on simple reg-
ular lattices that are either joined randomly depending on their
distance or if their distance is less than a certain cutoff (Rozenfeld
et al., 2002; Herrmann et al., 2003); combining network growth and
preferential attachment modulated by distance selection mecha-
nisms (Yook et al., 2002; Manna and Sen, 2002; Barthelemy, 2003);
and generating geographic networks based on local optimization
processes (Gastner and Newman, 2006).

Concerns of geographic and social proximity are not unknown
in the social sciences. In sociology, gravity-based models predict
that the likelihood of a relationship is inversely proportional to
the physical distance between two  individuals (Stouffer, 1940;
Zipf, 1949). In the context of international economics, the grav-
ity model of trade predicts trade-flow volumes and capital flows
between two  units to be directly proportional to the economic
sizes of the units (using GDP data) and inversely proportional to the
distance between them (Isard, 1954). In economic geography, the
gravity model was used to explain migration flows between coun-
tries, regions, or cities (Zipf, 1946), and showed that movement of
people between cities is proportional to the product of their popu-
lation size and inversely proportional to the square of the distance
between them.

Spatial networks have also been of interest to economic geogra-
phers, who  have considered networks as a means for understanding
urban growth, geographical clusters, international trade, and glob-
alization (Krugman, 1996). These efforts, however, have been
mostly metaphorical and insufficiently formalized (Grabher, 2006).
In sociology and organization theory, models of networks (includ-
ing spatial networks) have largely focused on the factors that affect
the dynamics of the formation of linkages between members of a
network (Podolny, 1994; Gulati, 1995; Lincoln et al., 1996; Gulati
and Gargiulo, 1998; Stuart, 1998). These empirical studies provide
support for preferential attachment type of mechanisms (Barabasi
and Albert, 1999) as an important driver of tie selection (Stuart,
1998; Podolny, 1993; Gulati, 1999; Powell et al., 2005). For example,
the alliance behavior of multinational corporations indicates that
firms will be more likely to have further alliances in the future with
increasing experience and connectivity (Gulati and Gargiulo, 1998;
Gulati, 1999), and an expanding network of interfirm alliances in
American biotech exhibits preferential attachment (Powell et al.,
2005). Geography as a significant determinant of tie selection and
network expansion has also been demonstrated. Empirical research
illustrates that ties between firms, representing alliances, corpo-
rate board interlocks, or investments, are more likely when two
firms are co-located (Stuart, 1998; Powell et al., 2005; Sorenson
and Stuart, 2001; Owen-Smith and Powell, 2004). Moreover, stud-
ies show that geographical proximity affects the entry of firms in
a network forcing them to locate in spatial proximity to industry
agglomeration (Fleming and Sorenson, 2001; Sorenson, 2003).

In Section 2, we represent real-world data on corporate compe-
tition and headquarter location as a directed network in space. In
Section 3, we  report an asymmetry between the out-degree (num-
ber of corporations a firm is affected by) and in-degree (number
of corporations a firm affects) distributions. Next, in Section 4, we
report that the geographic arrangement of corporate headquarters
strongly correlates with population density and that the probabil-
ity two  firms are competitors declines with geographic distance.
In Section 5, we  develop two models for spatial network growth
that yield both the degree distributions and geographic statistics

of the empirical network. We  present empirical evidence and a
theoretical scaling argument showing the close relation between
the two models. We  conclude in Section 6 with implications for
the field of economic sociology. Supplementary Material (see the
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nline version) includes comprehensive statistical analyses of the
arious empirical data and models.

. Corporate geographic competition network data

The competition network was reconstructed from information
ecords provided by Hoover’s – a large business research com-
any that offers comprehensive business information through the

nternet on corporations and organizations in over 600 industries.
ithin the detailed company records, information can be found

n location type (headquarters or other); street, city and state
ddress; financial information; industry codes; and competitors
ist. The competitors list was selected based on various informa-
ion sources including public documents (e.g., SEC filings), company
ebsites, industry-specific trade publications and journals, and
irectly from the company themselves. For example, Google lists 10
ompetitors by name in its filed 2009 10-K report to the U.S. Secu-
ities and Exchange Commission, including: (1) traditional search
ngines, such as Yahoo! Inc. and Microsoft Corporation’s Bing; (2)
ocial network sites, such as Facebook, Yelp, or Twitter; (3) ver-
ical search engines and e-commerce sites, such as WebMD  (for
ealth queries), Kayak (travel queries), Monster.com (job queries),
nd Amazon.com and eBay (commerce). While Google lists specific
-commerce and social network sites, Yahoo! Inc. – one of the lead-
ng U.S. search site with a broad range of other services – lists fewer
ompetitors on its 2009 10-K report, including Google, Microsoft,
OL, Facebook and MySpace. Microsoft identifies in its 2009 10-K
eport competitors for each of its five operating segments: Client,
erver & Tools, Online Services, Business, and Entertainment &
evices. In Appendix A (see Supplementary Material), we provide

 sample of Microsoft’s products and services, competitors, and the
ationale for competition, as identified by Microsoft.

In order to avoid problems of disjoint maps, we  limit our study
o firms with headquarters locations in the contiguous United
tates, for which detailed information on competitors was  avail-
ble. A large firm can also have many local or regional offices
here the firm’s activities are conducted. For example, Google is
eadquartered in Mountain View, CA, but has branches in other
.S. cities including Atlanta, Boston, Chicago, New York and Wash-

ngton, DC (Google Inc., 2009); a major industrial manufacturer
an have its main corporate offices in one city and factories scat-
ered elsewhere. In this paper, however, local and regional offices
re not included in the competition network, because detailed
nd complete information regarding their list of competitors was
ot available. Still, the focus on headquarters location provides
seful and direct information about the characteristics of compe-
ition; headquarters regularly gather data and intelligence from
ther competitors, and use the material collected to generate solu-
ions to complex problems and identify competitive strategies
Katz, 2002). Also, headquarters depend regularly on overlap-
ing resources (e.g., workforce, investment banks, advertising and
edia companies, and consulting firms) that tend to cluster near

ne another. Finally, we will see in Sections 4 and 5 that headquar-
ers location is a meaningful quantity with considerable predictive
ower.

The competition network can be studied by several sampling
ethods (Rothenberg, 1995). Here, we use “snowball sampling”

e.g., S.H. Lee et al., 2006) starting from a single node (company), we
elect all of the nodes directly linked from it, then the nodes linked
rom those selected in the last step, continuing until a termination
riterion is reached. To implement the method, we  have created a
eb  crawler that browses the Hoover’s website, and automatically
ownloads relevant information for subsequent analysis. The sam-
led competition network was obtained after crawling the web  for a
eriod of time that generated at least 10,000 nodes – a notably large
ks 33 (2011) 219– 230 221

network. Snowball sampling is a useful technique when relational
data is not given explicitly. In our case, Hoover’s maintains the cor-
porate data in a website with the following structure: webpages
correspond to different companies, and each webpage includes
general data related to the company as well as a list of compa-
nies judged to be competitors. Thus, to construct the network, we
perform snowball sampling. We  begin with a company and col-
lect its list of competitors; in a recursive fashion we traverse the
list of competitors to other webpages, collecting more list of com-
petitors and so on. This method could possibly generate a network
that does not reflect (in a statistical fashion) the structure of the
“real” network, because we  start the sampling from a particular
node. To eliminate this bias, one can construct different networks
by starting the same snowball sampling method from different seed
companies. After one computes several sampled networks G1, G2,
G3, . . .,  one takes the union of these networks (the set of nodes is
the union of the set of nodes in G1, G2, G3, . . .,  and duplicated arcs
are excluded) to get a larger sampled network. The original sampled
networks include companies around the globe, while the combined
network analyzed is reduced to companies that operate within the
United States.

Our sampling of the business information site, combining sam-
pled networks starting from companies whose main activities are
in different industries, resulted in a directed network of 10,753
companies and 94,953 competition links. The average in-degree
(or out-degree) of a node is about 9, with 40% of the competition
links being reciprocal. We  analyze the structure of the strong com-
ponents of the corporate competition network, and find that it has
420 components: one giant component that includes 10,234 nodes;
and 419 smaller components with varying sizes between 1 and 8.

Several observations indicate that one should study the inter-
firm competition network as an aggregate, rather than subdividing
it by industry or company size. First, many competition relation-
ships cross industrial boundaries. We  use the North American
Industry Classification System (NAICS), employed by various orga-
nizations to categorize businesses in Mexico, the United States and
Canada, to sort the nodes in our network by economic sector. NAICS
codes provide a hierarchical classification: the first two  digits indi-
cate general sector membership (22 meaning “Utilities” and 53
meaning “Real Estate, Rental and Leasing”, for example), and later
digits specify economic roles in more finely grained detail. At the
broadest level of classification, the first two  NAICS digits, only 74%
of interfirm competition links connect firms in the same sector.
Focusing to the industry level, when we use the first five NAICS dig-
its, this figure drops to 46%. If we use all six digits of the NAICS, only
38% of links connect nodes of the same classification. Thus, while
competition does appear to be somewhat sorted by industry (as
is only natural), neglecting competition relationships which cross
industrial boundaries would discard important properties of the
system. A similar concern applies to corporate size: if we measure
the size of a firm by its number of employees, the size of a company
correlates only weakly with the average size of its neighbors in the
network. (The Spearman’s non-parametric correlation coefficient
is only 0.56.) Therefore, subdividing the network by corporate size
would also be an artificial and unilluminating choice.

3. Analysis of in- and out-degree distributions

A competition network can be considered as a directed graph
with N nodes and L arcs, where there is an incoming arc to company
vi from company vj if company vi lists vj as a competitor.
We compared (see Fig. 1) the cumulative probability distribu-
tions Pin(k) and Pout(k) that a company has more than k incoming
and outgoing links, respectively. Several common parametric sta-
tistical distributions have been considered, and the fit of the

http://www.monster.com/
http://www.amazon.com/
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Fig. 1. The log–log plots of the cumulative distributions of incoming and outgoing links. (A) Aggregate competition network (10,753 nodes, 94,953 arcs). The out-degree
distribution is characterized by a stretched exponential law xˇ−1e−�xˇ with  ̌ = 0.53 and � = 0.58 (see Appendices B and C). The in-degree distribution is fitted by a stretched
exponential with  ̌ = 1.43 and � = 0.04 (see Appendices B and C). (B) Several sampled networks. The networks were identified by snowball sampling, starting from a seed
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ompany whose main activity is in a particular industry (energy & utilities: 4248 no
914  nodes, 56,663 arcs; construction industry: 4094 nodes, 35,376 arcs; agricult
etworks are similar to each other as well as to the aggregate network, suggesting 

ifferent distribution models have been compared using likeli-
ood ratio methods (see Appendices B and C for details). Both
he out-degree and in-degree distributions can be described by a
tretched exponential function (Clauset et al., 2009; Laherrere and
ornette, 1998) of the form xˇ−1e−�xˇ

. However, the in-degree dis-
ribution decays faster than the out-degree distribution (ˇin = 1.43,
out = 0.53), implying that companies with large in-degree are prac-

ically absent. This can also be seen as the markedly curved-shaped
ehavior of the in-degree distribution as shown in Fig. 1. A possible
xplanation is that while companies typically consider as competi-
ors a small number of other companies, there are a few companies
hat are considered as competitors by many others. This finding is
upported by studies of competition, which demonstrate that firms
ormulate their competitive strategies by taking into account the
erceived action only of a limited number of others (e.g., Gripsrud
nd Gronhaug, 1985; Carroll, 1985; Baum and Mezias, 1992; Porac
t al., 1995; Baum and Haveman, 1997). One could also think that
he asymmetry between the in- and out-degree distributions is
ue to an upper bound on the number of competitors a firm could

ist. Another explanation is the limited amounts of resources and
apabilities allocated for competition, which may  limit the num-
er of competitors a company considers. Independent information
ources used for data collection – including public documents, com-
any websites, industry-specific trade and journals, and interviews

 suggest that the asymmetry could be attributed to a variety of
imitations (whether cognitive or non-cognitive) including those

entioned above.
Asymmetric in- and out-degree distributions have been found

n other large complex networks (Braha and Bar-Yam, 2007, 2004).
he connectivity of competition networks is important in con-
training and determining many aspects of dynamical processes
ccurring on top of them, such as pricing decisions, strategic behav-
or, and firm performance. For example, it stands to reason that
vents and activities of central firms will tend to quickly propa-
ate (due to the heterogeneous outgoing connectivity) throughout
he entire competition network, benefiting or impairing the vitality
f the interconnected firms. This seems similar to ecological net-
orks, where the loss of a keystone species could have large effects

n the network (Sole and Bascompte, 2006).
We next examine the spatial characteristics of competition net-
orks. The specific latitude and longitude of each company were
btained from its address using Yahoo’s Geocoding Web  Service,
nd the distance between two companies was calculated by using
heir geographical coordinates. In Fig. 2, we compare the geograph-
5,789 arcs; transportation services: 3408 nodes, 31,330 arcs; computer hardware:
245 nodes, 32,758 arcs). We find that the out-degree distributions of all sampled
bustness of the snowball sampling used here.

ical deployment of companies with the population distribution in
the contiguous U.S. The high correlation found between the spatial
deployment of companies and population density is intuitive and
may  not be surprising. (We  note that this kind of correlation was
also observed for the geographical deployment of Internet routers,
see Yook et al., 2002; Lakhina et al., 2002.) Indeed, the patterns
shown in Fig. 2 can be explained as follows (Katz, 2002). Firms
depend and interact regularly with business service providers.
Both firms and service providers (e.g., investment and commercial
banks, and consulting firms) tend to cluster in areas that can attract
and retain a highly skilled workforce; have a large market to their
products; and have convenient access to airports, highways, and
telecommunication infrastructure. This implies that firms, their
competitors, and their business service providers tend to be located
near one another, with a bias towards large and densely populated
metro areas. Here, however, we attempt to go beyond the simple
correlation shown in Fig. 2, and to highlight a similarity (rather than
simple correlation) between the actual spatial distribution of com-
panies and the actual population density. The similarity between
the two different spatial distributions was  explicitly utilized in the
competition models presented in Section 5. More specifically, in the
competition models, firms are distributed on the Earth’s surface by
sampling from the population density distribution.

From a dynamic point of view, this also points to possible com-
mon  causal mechanisms that couple the processes of population
dynamics and new firm emergence.

4. Analysis of geographical distributions

The corporate competition spatial network enables us to relate
competition and geographic distance. Fig. 3 shows the probability
P(vi → vj|d(vi, vj) = l) that two  companies separated by a distance l
are related by a competition link, indicating that geographic prox-
imity tends to increase the probability of competition. In Appendix
D, we consider several alternative models for the probability of
competition, and provide detailed information about parameter
estimation and statistical model comparison. The results show that
as the distance l increases, the decrease in competition probability
can be plausibly described as a power-law. However, the fluctu-

ations around the power-law behavior for distances larger than
≈1000 km also imply that a model for the presence of competition
needs to take into account both geography-dependent mechanisms
and non-geographic processes, as explored later in this paper.
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Fig. 2. (A) Geographical deployment of companies with headquarters locations in the contiguous United States. The latitude and longitude of each company were obtained
from  its address using Yahoo’s Geocoding Web  Service. (B) Map  of the 2000 population d
by  the U. S. Census Bureau as part of the 2000 Decennial Census. In this map, white dots c
7500  people.

Fig. 3. The relationship between geographic distance and competition. The log–log
plot shows the probability that two companies separated by a distance l are related
by  a competition link. The competition probability is fitted by a power-law l−ˇ with
ˇ  ≈ 0.3 (see Appendix D). The probability was estimated from the proportion of pairs
of connected companies separated by a distance l among all the total number of pairs
of (connected or not) companies separated by a distance l (practically, link lengths
with a resolution of 30 km are examined).

Fig. 4. (A) The cumulative probability distribution that the length of a link is greater than
cutoff  x−� e−�x with � = 0.17 and � = 0.0005. (B) The histogram of the lengths of links. We se
a  large portion of links of length 3800 km or less, and then an apparent smaller peak of l
distances.
istribution in the United States (also referred to as the “Nighttime Map”) produced
oalesce to form the urban population concentrations; each white “dot” represents

The physical distance between nodes in geographic networks
plays an important role in determining the costs and benefits of
communication and transport. As such, common to many geo-
graphic networks is a bias towards shorter links. The competition
network analyzed here is of no exception (but perhaps for dif-
ferent reasons). Indeed, we see in Fig. 4B that the competition
network has many very short links of length 100 km or less. How-
ever, the competition network also includes a large portion of links
of length 3800 km or less, and then an apparent smaller peak of
longer links around 4000 km.  Many of these longer links repre-
sent continent-wide distances. We  show in Fig. 4A the cumulative
probability distribution that the length of a link is greater than l
kilometers. In Appendices B and C we analyze several common
parametric statistical distributions, and find that the link length
distribution is best fitted by a power law with subsequent exponen-
tial decay of the form l−� e−�l. The estimated parameter � = 0.0005
indicates that the characteristic distance beyond which the prob-
ability distribution is dominated by an exponential decay is about
1/� ≈ 2000 km.

The geographic nature of the competition network also has an
effect on its topological robustness. In network theory, “robustness”
refers to a network’s ability to withstand attacks, such as random
deletion of nodes or the targeted removal of highly connected hubs.
The effect of attacks is typically gauged by the change effected in

the network’s topological properties, such as the size of its largest
component: a network which falls apart into many small pieces
upon the excision of a single node is fragile. Power-law networks

 l kilometers. The cumulative distribution is fitted by a power law with exponential
e that the competition network has many very short links of length 100 km or less,

onger links around 4000 km. Many of these longer links represent continent-wide
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Fig. 5. Robustness of the competition network, as demonstrated by the deletion of
nodes. Solid (upper) line shows the size of the largest strong component surviving
as  nodes are randomly deleted. Dashed (lower) line shows the size of the largest
component as nodes are deleted in order of decreasing out-degree. Higher-degree
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and at each subsequent step the network grows with the addi-
odes are more “central” in that attacking them breaks apart the network more
fficiently. Inset: the same data, plotted logarithmically.

rown by preferential attachment have been found to be resilient
gainst random attacks, but weak against the targeted deletion of
igh-degree nodes. Here, we see that the degree distribution is not
he only relevant factor in determining robustness; as Fig. 5 shows,
ven after we delete thousands of nodes, the network does not
issolve into disconnected pieces.

. Modeling corporate spatial competition networks

Motivated by the above empirical results, we develop in this
ection two explanatory mechanisms that provide insight on the
rganization of interfirm spatial competition networks. The two
echanisms are classified into two types. The first model incor-

orates a geography-dependent mechanism combined with a
preferential attachment” type of rule (Barabasi and Albert, 1999),
here the topology of the competition network evolves in such

 way that already well connected companies have greater prob-
bility to attract more competition links in a process of positive
eedback (the “the rich get richer” paradigm). The first model is
articularly appropriate for modeling network formation whose
uture topology is largely determined by past events that are “inter-
al” to the network. Thus, we also consider a second model where
he future topology of the network is determined by “external”
nformation, which is non-topological in nature, and is intrinsi-
ally associated with each company in the network. Specifically,
he second model incorporates a geography-dependent mecha-
ism combined with a “fitness” type of rule, where companies are
ssigned an intrinsic quantity or fitness (which could change in
ime) in such a way that the probability of attracting more competi-
ion links is related to the fitness of the company (similar concepts
f “fitness” have been used in various studies including “firm size”
Baum and Haveman, 1997; Ijiri and Simon, 1977), “talent” and
quality” (Rosen, 1981), or “status” (Podolny, 1993)). We  show that
oth types of models are able to reproduce empirically observed
haracteristics of competition networks. More importantly, despite
he seemingly different premises of the two models, we provide
 scaling argument showing the equivalence of the two  models.
he scaling argument is supported by the empirical results and
umerical simulations.
ks 33 (2011) 219– 230

5.1. Preferential attachment and geography-dependent
mechanism

Although the competition network studied here represents data
collected at particular time point, it is the result of a specific devel-
opment path of network dynamics that involve firm entries and exit
as well as the formation and dissolution of competition links. The
heavy tail characteristic displayed by the out-degree distribution of
the competition network (Fig. 1) points to the possibility that the
formation of competition networks could be governed by a pref-
erential attachment rule (Barabasi and Albert, 1999). Figs. 3 and 4
show that firms compete according to the distance between them,
signifying that the formation of links is also geometrical in nature.
Moreover, the strong correlation between firm and population dis-
tributions (Fig. 2) means that any model of competition should
take into account the concentration of firms in highly populated
areas.

The preferential attachment and geography-dependent mech-
anisms can be explained using substantive concepts that pertain
to the nature of competition. In economics, “barriers to entry”
refer to circumstances that make it very difficult or costly for a
potential new entrant to compete with established firms that are
already selling competing goods or services. Accordingly, incum-
bent firms with few competitors (“lower degree” as in a monopoly)
have high entry barriers; and incumbent firms with lots of com-
petitors (“higher degree” as in perfect competition) have low entry
barriers. The preferential attachment mechanism – where the
more competitors a firm has (and thus the lower the entry bar-
rier), the more likely it is to receive new competition links – is a
dynamic manifestation of the barrier-to-entry effect. The prefer-
ential attachment rule can also be explained in terms of “spin-out”
companies of established firms. Accordingly, it is more likely that
incumbent firms with many competitors will attract more compe-
tition links from “spin-out” companies of the direct competitors.
The geography-dependent mechanisms can be explained in terms
of the benefits for firms to cluster near one another. One of these
benefits is the knowledge spillover that occurs among firms (within
and between industries), which fosters the exchange of ideas and
rapid adoption of innovation.

We  therefore seek a model that considers the interplay between
preferential attachment, geographic distance, and population den-
sity effects. A real understanding and modeling of competition
networks should be able to reproduce empirically observed char-
acteristics of competition networks – such as the degree and link
length distributions reported in Figs. 1 and 4 – as natural outcome
of a minimal set of general mechanisms governing the formation
of competition networks.

Network growth models including geographical distance of
nodes (Yook et al., 2002; Herrmann et al., 2003; Manna and Sen,
2002) are a natural modeling approach for competition networks.
We identify points on the curved surface of the Earth by their lati-
tude and longitude coordinates, and compute geographic distances
using the great circle distance between pairs of points on the sur-
face of a sphere. We  then superimpose on the map a grid consisting
of two sets of parallel longitude and latitude lines, dividing the
Earth’s surface into squares (for our numerical simulations, we use
high resolution data that consists of boxes of 0.0083◦ × 0.0083◦).
At each box, the population density is calculated from population
data by dividing the population of each box by its area in square
kilometers. In the following, firms are distributed on the Earth’s
surface by sampling from the population density distribution. We
start with m0 firms, each pair connected by a competition link,
tion of new firms. For each new firm, m new directed competition
links are created connecting it to firms already present in the sys-
tem. The exponentially truncated power-law distribution of the
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Fig. 6. Comparison between the actual competition network and simulation results of four network competition models, with respect to the cumulative link length (A) and
out-degree (B) distributions. The models considered are: Linear Preferential Attachment (black dashed line,  ̨ = 1,  ̌ = 0); Competition model 1 (green dotted line,  ̨ = 0.85,
ˇ  = −0.3); Gravity I (gray dashed line,  ̨ = 0,  ̌ = −1); Gravity II (blue dashed-dotted line,  ̨ = 0,  ̌ = −2); Null model (gray solid line,  ̨ = 0,  ̌ = 0). Distributions corresponding
to  the actual competition network are shown as red solid lines. In the simulations, we  have used a 3120 × 7080 population density grid from the 2000 U.S. Census with
a  box resolution of 30′′ (0.0083◦), or approximately 1 km2. In all cases, firm location on the surface of the contiguous United States is determined by randomly sampling
from  the population density distribution. Once a box is sampled, the firm’s latitude and longitude are uniformly and randomly located within the box. (A) Comparison of
cumulative link length distributions. (B) Comparison of cumulative out-degree distributions. The out-degree distribution generated by the Preferential Attachment model
(with  linear preferential attachment and without geographical distance effect) is fitted by a power-law; the out-degree distribution corresponding to Competition model 1 is
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haracterized by an exponentially truncated power-law; and both Gravity I and Gra
y  an exponential. (For interpretation of the references to color in this figure legend

utgoing connections (Fig. 1) suggests the use of a nonlinear prefer-
ntial attachment rule (Albert and Barabasi, 2002; Boccaletti et al.,
006), which generalizes the linear preferential attachment mecha-
ism that results in a power-law degree distribution (Barabasi and
lbert, 1999). This, combined with the fact that the competition
robability tends to decrease with geographic distance according
o a power-law, offers the possibility that the growth of competi-
ion networks is governed by a nonlinear preferential attachment
ule modulated by a link length dependent factor. More specifically,
he firms j receiving the new links from firm i are chosen with prob-
bility proportional to k˛

j
lˇ
ij

, where kj is the total degree of firm j; lij
s the length in kilometers of the directed link from i to j;  ̨ and ˇ
re continuously varying parameters.

We  have tested the validity of the above model by conduct-
ng several extensive computational experiments, and comparing
he simulation results with the actual observations made from the
ompetition network. In the simulations below, we have used a
opulation density grid from the 2000 U.S. Census produced by
he Columbia University Center for International Earth Informa-
ion Network (CIESIN). The grid has a resolution of 30′′ (0.0083◦),
r approximately 1 km2. In all cases, we start with m0 = 8 con-
ected firms, and at each step of network growth a new firm with

 = 8 directed competition links will be connected to firms already
resent in the system until the total number of firms reaches
he actual number of firms in the sampled competition network

 = 10,753.
The model above offers a good flexibility for calibration since

wo parameters can be modified. Altering the value of  ̨ and ˇ
ill influence the estimated spatial interactions. As described in
ppendix E, we have calibrated our model to correctly reproduce

he empirically observed degree and link length distribution char-
cteristics reported in Figs. 1 and 4, and have derived the values
f  ̨ = 0.85 and  ̌ = −0.3 (henceforth called Competition model 1).
he plausibility of the proposed model given the observed data

s assessed by comparing the proposed model with a null model,

hich serves as the baseline for making comparisons of improve-
ent in model fit. In our case, the null model corresponds to the

arameters  ̨ = 0,  ̌ = 0, and where firms are distributed randomly
 (with only geographical distance effect) generate distributions that are well fitted
reader is referred to the web version of the article.)

and uniformly on the surface of the contiguous U.S. That is, the null
model maintains the growing character of the network, but the
“preferential attachment” and “friction of distance” are eliminated
by assuming that a new firm is connected with equal probability
to any firm in the system. In addition, we examine three extreme
cases of the competition network model: (1) Linear Preferential
Attachment:  ̨ = 1,  ̌ = 0; (2) Gravity I:  ̨ = 0,  ̌ = −1; and (3) Gravity
II: ˛ = 0, ˇ = −2. The first case corresponds to the scale-free net-
work model developed by Barabasi and Albert (1999) where an
already present firm receives a new competition link according
to a linear preferential attachment rule, that is, with probabil-
ity proportional to its degree. The second and third cases reflect
a variety of gravity models in social science that are based on
the empirical principle that proximity in geographic (and social)
space affects the likelihood of interaction (Stouffer, 1940; Zipf,
1949, 1946; Isard, 1954). Validation and accuracy assessment of
the various network growth models is performed by visual com-
parisons (see Figs. 6–9), as well as quantitative analysis as detailed
in Appendix E.

Fig. 6A and B compares the link length and out-degree distri-
butions, respectively, generated by the above five models with
the empirically observed distributions shown in Figs. 1 and 4A.
We note that both the link length and out-degree distributions of
the real competition network deviate significantly from that pro-
duced by the Null, Linear Preferential Attachment, Gravity I, and
Gravity II models. The simulation results, however, of Competition
model 1 are able to nicely reproduce the actual observations of the
competition network, indicating that Competition model 1 gives a
better characterization of the data than the four models specified
above. Competition model 1 takes into account three effects: pop-
ulation density, preferential attachment, and geographic distance.
The value of  ̨ = 0.85 reflects a sublinear (  ̨ < 1) tendency of pref-
erential linking to firms with many competition links, which can
result in a truncated power-law degree distribution (Amaral et al.,

2000; Braha and Bar-Yam, 2007), as indeed observed empirically
(Fig. 1A). The value of  ̌ = −0.3 shows that the “friction of distance,”
or how rapidly interaction decreases as distance increases, is rela-
tively small compared to the Gravity-based models.
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Fig. 7. The effect of the geographical distance bias on the link length (A) and out-degree (B) distributions. In the simulations, we  have held the “preferential attachment”
parameter  ̨ at its optimal value 0.85, firm location is determined by the population density distribution, and we  have varied the “friction of distance” parameter ˇ. Five network
competition models are considered: Sublinear Preferential Attachment without Geographical Distance Bias (black dashed line,  ̨ = 0.85,  ̌ = 0); Competition model 1 (green
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otted  line,  ̨ = 0.85,  ̌ = −0.3); Sublinear Preferential Attachment with Inversely Lin
ith  Inversely Square Distance Bias (blue dashed-dotted line,  ̨ = 0.85,  ̌ = −2), and

re  shown as red solid lines. (For interpretation of the references to color in this fig

In order to test for the effect of geographical distance bias on
he competition network growth, we have held the “preferential
ttachment” parameter  ̨ at its optimal value 0.85 and have var-
ed the “friction of distance” parameter  ̌ set at values 0, −0.3, −1,
nd −2. Fig. 7A shows how a decrease in the value of  ̌ leads to a
ignificant bias towards shorter links. However, Fig. 7B shows that
he out-degree distributions are almost not affected by the value of
, when  ̨ is set at the optimal value 0.85. This indicates that the
arameter  ̨ has a strong effect on the out-degree distribution, and
eak effect on the link length distribution.

Testing for the effect of preferential attachment on the com-
etition network growth further corroborates this finding. This is
one by experimenting with varying values of ˛, when  ̌ is set at
he optimal value −0.3. As shown in Fig. 8A and B, while the link
ength distributions for varying  ̨ are not changed and are similar
o the actual distribution, the out-degree distributions deviate sig-

ificantly for values of  ̨ that are different from the optimal value
.85. These results imply that the actual link length distribution is
etermined to a large extent by the “friction of distance” parame-

ig. 8. The effect of the preferential attachment bias on the link length (A) and out-de
arameter  ̌ at its optimal value −0.3, firm location is determined by the population densi
etwork  competition models are considered: Geographical Distance Bias without Prefer
otted  line,  ̨ = 0.85,  ̌ = −0.3); Linear Preferential Attachment with Distance Bias (blue d

 = 0, ˇ = 0). Distributions of the actual competition network are shown as red solid line
eferred  to the web  version of the article.)
istance Bias (gray dashed line,  ̨ = 0.85,  ̌ = −1); Sublinear Preferential Attachment
odel (gray solid line,  ̨ = 0,  ̌ = 0). Distributions of the actual competition network

gend, the reader is referred to the web version of the article.)

ter ˇ, and weakly so by the “preferential attachment” parameter ˛.
Overall, Figs. 7–8 show once more that Competition model 1 pro-
vides a better characterization of the competition network than
other combinations of  ̨ and ˇ.

Finally, we test for the effect of population density on the compe-
tition network growth. To this end, we have set the values of  ̨ and ˇ
to their optimal values, and have chosen the location of firms based
on two methods: (1) Location by Population Density (as in Competi-
tion model 1): firms are distributed on the surface of the contiguous
U.S. by sampling from the population density distribution; and (2)
Random Location: firms are distributed randomly and uniformly
on the surface of the contiguous U.S. Fig. 9B shows that both firm
placement schemes give similar results when comparing their out-
degree distribution results with that of the observed data. However,
as shown in Fig. 9A, the link length distribution produced by the
random location scheme deviates significantly from that produced

by both Competition model 1 and the actual competition network.
In summary, Figs. 6–9 provide good evidence that the structure
of competition networks can be better explained by taking into

gree (B) distributions. In the simulations, we  have held the “friction of distance”
ty distribution, and we  have varied the “preferential attachment” parameter ˛. Four
ential Attachment (black dashed line,  ̨ = 0,  ̌ = −0.3); Competition model 1 (green
ashed-dotted line,  ̨ = 1,  ̌ = −0.3); and Null model (gray solid line or black circles,
s. (For interpretation of the references to color in this figure legend, the reader is
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Fig. 9. The effect of firm location decisions on the link length (A) and out-degree (B) distributions. In the simulations, we  have held the “preferential attachment” parameter
˛  and “friction of distance” parameter  ̌ at their optimal values 0.85 and −0.3, respectively. Firm location is determined by two  distinct mechanisms: Random Location (black
dashed  line) by which firms are distributed randomly and uniformly on the surface of the contiguous U.S.; and Location by Population Density (green dotted line) by which
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ccount network dynamical growth, preferential attachment, geo-
raphical distance, and demographic factors such as population
ensity. In particular, a simple model that is able to reproduce
easonably well the main observed features was proposed.

.2. Fitness and geography-dependent mechanism

While the first model presented in Section 5.1 largely assumes
hat the competition network evolves according to an “internal”

echanism (“preferential attachment”), where the future topology
s determined by past ones, it is possible that the topology of the
ompetition network is determined by “external” information in
he form of an intrinsic quantity or “fitness” associated with each
ompany in the network. Here, we consider the size of a company in
erms of the numbers of employees (Baum and Haveman, 1997; Ijiri
nd Simon, 1977) as the natural candidate to be identified with the
fitness” associated with each company in the competition network
similar results are obtained when measuring size by sales, assets,
r profits). In this section, we present an alternative competition
odel (Competition model 2) that incorporates directly the size of

ompanies.
Before we  present the model, we first present empirical evi-

ence and theoretical scaling argument showing that the size of
ompanies is scaled with their degree (number of competitors) in
he competition network. To quantify the relationship between the
ize of companies and their degree in the competition network, we
alculated the average size s̄ of  companies with out-degree k in the
ompetition network. For the competition network, the average
ize s̄ shows a gradual increase with k, which can be fitted with a
ower law s̄(k) ∝ kı with ı ≈ 1.07 (Fig. 10A). The fluctuations of the
ize of individual companies s(k) around the mean s̄(k) have been
ound to be small; thus, we can make the following approxima-
ion: s(k) ∝ kı. If we approximate the out-degree distribution with

 power law, with or without cutoff, p(k) ∝ k−� , then

(s) = p(k)
dk

ds
= p(k)

s′(k)
∝ k−�

ıkı−1
(1)
ince k ∝ s1/ı, we conclude that

(s) ∝ s−�/ı

s(ı−1)/ı
∝ s−�/ı−(ı−1)/ı = s−� (2)
n density distribution. Distributions of the actual competition network are shown
etation of the references to color in this figure legend, the reader is referred to the

leading to the relation between the three scaling exponents:

� = � + ı − 1
ı

(3)

The significance of this result is that the right-skewed prop-
erty characterized by the firm size distribution can be related to
more fundamental scale invariant properties, characterized by the
two exponents � and ı. Eq. (3) is confirmed for the competition
network analyzed here. The calculation of � ≈ 1.6223 using maxi-
mum  likelihood estimation (see Table B.2 in Appendix B) and Eq. (3)
gives rise to � = 1.5816, which agrees pretty nearly with the value of
the exponent � ≈ 1.5925 as obtained by using maximum likelihood
estimation to the firm size data (see Fig. 10B). The heuristic utility
of the scaling result can be seen by applying the scaling relation
k(s) ∝ s1/ı to the attachment rule k˛

j
lˇ
ij

used in Competition model
1 (see Section 5.1); obtaining an attachment rule that incorporates
directly the size of companies: s˛/ı

j
lˇ
ij

= sv
j
lˇ
ij

, where v = ˛/ı. This
leads to the possibility that “firm size” and “number of competi-
tors” are two  manifestations of market competition signals,  which
can thus be applied interchangeably for predictive purposes. The
model presented below incorporates these insights.

Motivated by the scaling argument presented above, we next
present a model (Competition model 2) that takes into account
explicitly the size of companies. We then show that Competition
model 2 yields similar results to that reported for Competition
model 1. Competition model 2 incorporates three mechanisms: (1)
the geography-dependent mechanism is the same as discussed in
Section 5.1. That is, firms are distributed on the Earth’s surface by
sampling from the population density distribution, and the proba-
bility of attracting more competition links tends to decrease with
geographic distance; (2) the probability of attracting more compe-
tition links increases with the size of the company; and (3) the firm
size dynamics follows a Gibrat-like stochastic growth process in
which growth rates are independent of size (Sutton, 1997), and in
which firm sizes are not allowed to fall below a lower bound that
can change over time (Malcai et al., 1999; Axtell, 2001). As far as
we know, there is limited effort in the network literature to con-
nect models of “fitness” dynamics (in our case, firm size dynamics)

with models of network formation (in our case, dynamics of linkage
formation).

More specifically, we  start with m0 firms, each pair connected by
a competition link, and at each subsequent step the network grows
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Fig. 10. Relationship between firm sizes, by employees, and their node degrees in the competition network. (A) The average size s̄ of companies with out-degree k in the
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ompetition network. The solid line is a power law fit s̄(k) ∝ k . Inset: average si
009  employees, constructed using logarithmic binning having width increasing in

ikelihood estimation for values s ≥ smin (Clauset et al., 2009), where the minimum v

ith the addition of new firms assigned, which are a size of “one”
rbitrary unit. For each new firm, m new directed competition links
re created connecting it to firms already present in the system. The
caling relation between firm size and degree (Fig. 10A) suggests
he use of a nonlinear cumulative advantage rule, where the prob-
bility of attracting more competition links increases with the size
f the company. More specifically, the probability of attaching to an
xisting firm j is proportional to sv

j
lˇ
ij

, where sj is the current size of
rm j; lij is defined as in Competition model 1; and v and  ̌ are con-
inuously varying parameters. Once the new node is attached, the
izes of already existing firms in the system are changed according
o a Gibrat-like process with a reflective lower bound, known as the
esten process (Malcai et al., 1999; Axtell, 2001). In particular, we
se the model presented in Malcai et al. (1999),  where at each step

 firm is randomly selected and updated according to the following
tochastic rule:

i(t + 1) = max{�(t)si(t), cs̄(t)} (4)

here 0 ≤ c < 1 is a constant factor, s̄(t) is the average size of firms
t time t, and �(t) is a random growth rate drawn from a given den-
ity function f(�) that satisfies

∫
��f(�) d� = 1. Here we use, without

oss of generality (Malcai et al., 1999), a uniform distribution in the
ange �min ≤ � ≤ �max. The stochastic growth process in Eq. (4) is
imulated for T arbitrary units of time before a new firm is added
o the competition network.

Fig. 11A and B compares the link length and out-degree dis-
ributions, respectively, generated by Competition models 1 and

 with the empirically observed degree and link length distribu-
ions shown in Figs. 1 and 4A. Both models, which utilize different
pproaches yet apply common principles of “cumulative advan-
age” and “market competition signals”, give comparable results
hat nicely reproduce the actual observations of the competition
etwork.

. Conclusions

We have analyzed a large inter-organizational network where
he nodes are firms located in the U.S. and directed links repre-
ent competition by the nodes forming the link. We  focused first

n topological properties, and have shown that the competition
etwork exhibits a noticeable asymmetry between the exponen-
ially truncated power law distribution of outgoing competition
inks and the exponential law governing the in-degree distribution.
sus total degree shows a power law fit s̄(k) ∝ k . (B). Histogram of firm sizes, by
rs of two. The exponent � ≈ 1.5925 of the power law was obtained using maximum
smin was set to the lower end of the range shown in A.

This characteristic, which is consistent with results of other com-
plex networks (Braha and Bar-Yam, 2007, 2004), can be explained
as follows: firms are not regarded as passive economic entities, but
the actions taken by firms could also be seen as determined by
and affecting the behavior of other competitors. The exponential
law governing the in-degree distribution could indicate a limitation
on the firm’s capacity to compete with (and thus affecting) many
firms, while the power law governing the out-degree distribution
could reflect the ability of competition networks to minimize the
effects caused by major events or changes that require significant
adjustment in firm behavior. Indeed, the power-law behavior of
the out-degree distribution implies that there are only a few firms
with many outgoing competition links (i.e., affected by many oth-
ers), which means that most of the time the competition network
will display a low sensitivity to network perturbations. Altogether
these results suggest that the structure of competition networks
tends to stabilize the dynamics of competition.

The geographical aspect of the competition network has been
analyzed in three ways. First, we have shown that the spatial
distribution of companies is strongly correlated with the popu-
lation distribution. This finding emphasizes the important role
of environmental and exogenous mechanisms as context for net-
work formation. Second, we have shown that geographic proximity
increases the probability of competition following a power law,
characterized by a scaling coefficient (“friction of distance”) which
is considerably lower than values used in other gravity-based mod-
els. This result could be explained, for instance, as a consequence
of improvements in transport efficiency or communications tech-
nology, both of which tend to reduce the value of the friction of
distance ˇ. Third, we have analyzed the physical distance between
firms, and have shown that the link length probability distribution
is well fitted by a power law with exponential decay distribution
with many very short links of length less or equal to 100 km, and
extended link lengths of up to 4000 km.  This is indicative of the
tendency of competition networks to agglomerate into geographic
concentrations (“clusters”) of interconnected firms with character-
istic size of about 100 km,  and with competition links of varying
lengths between separate clusters.

Motivated by the above empirical observations, we  have pro-
posed two models for the formation of competition networks,

which are grouped in two classes according to whether the con-
nection probability is determined by information that is internal
(“degree”) or external (“firm size”) to the network. By comparing
simulation results with the empirical observations of the compe-
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Fig. 11. Comparison between the actual competition network and simulation results of Competition models 1 and 2, with respect to the cumulative link length (A) and
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ut-degree (B) distributions. We have used the following parameters for Compet
min = 0.9 and �max = 1.1 (Malcai et al., 1999), T = 1000, the “friction of distance” par
tting  the parameters to the observed data.

ition network, we have demonstrated that both models are able
o reproduce observed characteristics. The competition network

odels share two common features that provide insights into the
actors governing the origin of competition networks: (1) spatial
ocations of firms, which are positively correlated with the pop-
lation density; and (2) stochastic incremental growth governed
y nonlinear cumulative advantage rule (determined by “degree”
r “firm size”) modulated by geographic distance. We  have shown
hat the “degree” of a firm in the competition network (internal
roperty) and its “size” (external property) can be treated on equal
ooting. This leads to the intriguing possibility that both “degree”
nd “firm size” are two instances of “market competition signals,”
y which a company conveys information to potential new com-
etitors about the future possibility of success once competition is
stablished.

The model and results presented here are a step towards a
oherent model of interfirm competition network formation in par-
icular, and dynamic perspective of economic geography in general.

ore research is needed in several directions. In this paper we  con-
ider the entry of new firms, their links, and dynamics of firm size
s the only processes affecting the formation of the network. How-
ver, a more realistic description of the formation of competition
etworks should take into account the effect of various local events
n the large topology of the network, including the formation of
ew competition links between existing firms, dissolution of exist-

ng competition links, shifting (or rewiring) of existing competition
inks, exit of existing firms, and merging of existing firms. The rel-
tive frequency of these local processes will determine (combined
ith geographic and population density effects) to a large degree

he structure of competition networks. Moreover, other tie forma-
ion mechanisms operating at the microlevel could be considered
uch as similarity/dissimilarity in size, performance, or financial
ndicators between pairs of potential competing firms. While it is
heoretically possible to incorporate the above modifications, the
carcity (at this point) of longitudinal competition and firm-specific
ata over significant time periods make it difficult to validate the
odel or parameterize it for simulation and prediction purposes.
The simple competition models introduced here offer an evolu-

ionary perspective on economic geography and market structure
hat significantly extends traditional notions of economic compe-
ition and geographical clusters. Combined with proper models of

ompetition dynamics, it also opens up a new range of empiri-
al and analytic possibilities in realistically examining the effect
f interfirm competition on firm performance, strategy dynamics,
rice and output changes, technology diffusion, the emergence of
odel 2: the random growth rate �(t) is set to be uniformly distributed between
r  ̌ = −0.3 as in Competition model 1, and v = 0.75 and c = 0.23 were determined by

fast-growing geographic clusters (hot spots), and many other phe-
nomena of industry dynamics (e.g., “Red Queen” dynamics; Barnett
and Hansen, 1996). Finally, the model provides a framework to
study the ability of competition networks to be resilient (robust)
to firm and economic fluctuations.
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