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Control Limits for Multi-stage Manufacturing
Processes with Binomial Yield (Single and
Multiple Production Runs)

MIRYAM BARAD and DANIEL BRAHA

Tel-Aviv University, Israel

The problem of ordering a single or a series of production runs to meet a single make-to-order
demand, where the various stages in the production process have binomial yields, is addressed. Use
of additional procurement of part-finished products or reworking defective material previously made
to supplement yields at any stage is considered. The costs of this and manufacture, disposal of
surplus or shortages are assumed to be proportional to the numbers involved. It is shown that when
a single production run is considered, the optimal policy is defined by two critical numbers (control
limits) at each stage. The treatment of ordering a series of production runs follows from and builds
on the single run analytical result by developing an approximation in which the problem is
decomposed into a series of single runs. Set-up costs may or may not be incurred.
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INTRODUCTION

Stochastic yield in response to a deterministic make-to-order (single period) demand for

non-defective units is a situation common to many industries, such as those with electronic or

mechanical products, and difficulties in the complex area of microelectronics assembly have
renewed interest in research into this problem. The implications of including yield randomness
into production/inventory models have been addressed by Karlin', Shih?, Lee and Yano® and

Wein*, amongst others (see Yano and Lee’ for a survey of lot sizing with random yields).

Three aspects of the modelling problem are noted as relevant here.

(1) The first aspect is the choice of the probability law used to describe the stochastic yield of
the manufacturing process. Two major alternative sources are discrete distributions
(usually with independence between the units produced being assumed) or continuous
ones. After consideration, theoretical versus empirical could be the relevant classification
to adopt.

(2) The second aspect of model design is the complexity of the manufacturing system being
represented, whether it can be treated as single- or multi-stage.

(3) The number of runs that may be carried out in order to satisfy the given demand is the
third relevant aspect of model design. If this is limited (to a single run, perhaps) then a
short (or excess) quantity of good finished units may occur, and the resulting shortage (or
overage) costs have to be tolerated. If additional runs may be made within the delivery
time allowed, the total processing time for each run being relatively low, then these may
be made to make up shortages, although for such a decision to be economic, the costs of
the additional set-ups (e.g. of reordering parts and materials) have to be considered.

Initially, the problem was treated as that of ‘Reject Allowance’ (see Giffler®, Levitan’ for
example) with the yield of a (single stage) system being assumed to have either a binomial or
Poisson distribution. Single-stage models were also studied by, amongst others, Karlin!, Shih?,
Erhard and Taube®, Henig and Gershak®. Shih considered a continuous version of the ‘Reject
Allowance’ whilst assuming that the yield was stochastically proportional to the input. Such a
yield model has also been examined by Henig and Gershak® and Gershak et al.'® amongst
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others. Klein'! represented the ‘Reject Allowance’ single stage problem with N production
runs as a Markovian process. Beja!? extended the binomial formulation of the model by using
an assumption that he called ‘constant marginal production efficiency’.

In the models mentioned above, yield distributions were ‘given’. Situations where appropri-
ate investments could improve such distributions were modelled, for example, by Gerchak
and Parlar® and by Cheng'*. An early approach to the serial multi-stage (single period)
problem, was addressed by Vachani®® who also considered more than one production run to
satisfy the given demand.

A recent treatment of the multi-stage, single period model, which assumed a stochastically
proportional distribution of the yield as mentioned above, was presented by Lee and Yano’.
In their model (set in the microelectronics area) a decision is made after each manufacturing
stage (an inspection station is located after each stage) to determine how many non-defective
semi-finished units should be transferred to the next stage and how many should eventually be
disposed of. They assume that production, disposal and shortage costs are linear and that it is
less expensive to hold inventory at one stage than to process it and hold the expected
non-defective output at the following stage. Under these circumstances, the authors proved
the optimality of a single critical number representing the optimal target input quantity at
each stage. A multi-stage serial production system, where buffer stocks have target values and
their expected deviations from these target values are minimized, was analysed in Reference
16. Wein* extended Lee and Yano’s model® to allow (at given cost) rework of the defective
items at some production stages. Her model was also set in the world of microelectronics,
namely in the Application Specific Integrated Circuit (ASIC). It assumed that rework could
always be carried out and that shortages were not allowed. Empirical models of yield
distributions were reported.

Here, an extension of Lee and Yano’s formulation is presented. First, similarly to their
model, a single production run is considered. Then, a multiple production run formulation of
the problem, building on the single run analytical result through a decomposition into a series
of single-run models, is also addressed. The single-run model differs from Lee and Yano’s
formulation in several aspects. It assumes a binomial rather than a stochastically proportional
(multiplicative) yield model. A significant contrast between these two models is the independ-
ence of the individual yields exhibited by the binomial model, versus perfect correlation as
implied by the multiplicative model. Accordingly, in the binomial model, the variance of the
yield rate (fraction non-defective) diminishes with the increased batch size, while in the
proportional model it is not affected by the batch size.

Another distinctive feature of the present formulation is its allowing for purchasing of
semi-finished products, or reworking some of the defectives, at intermediate stages. It is
shown that the optimal policy here has two critical numbers at each stage. The second critical
number is essentially a ‘procure-up-to’ point for non-defective semi-finished units.

A ‘purchasing’ situation fits a company that applies a modular product design policy
coupled with a Just-In-Time (make-to-order) inventory policy. The manufacture of pneumatic
power tools!’ is an example of modular product design where a broad array of models (built
through extensive use of standardized component modules) are made to order and where
‘casings’, ‘mechanisms’ and some modular components can be obtained from outside
suppliers. Suppliers and customers work closely to resolve issues pertaining to design and
delivery. In this environment, different final products share some common stages in the
course of their manufacturing processes (see also A3 in the next section). Manufacturing
stages, common to some specific models, are more likely to be early stages that are
fundamental to many products.

A ‘reworking’ situation is compatible with an environment such as ASIC production (as
captured by Wein’s model) where the profitability of rework alternatives has to be assessed.
In this context it should be recalled that ‘special’ rework operations (usually conducted
externally to the main production line), although sometimes very expensive as compared with
‘regular’ (on-line) manufacturing costs, may still not be successful. Hence, valid estimates of
rework cost have to take into account that some rework operations may have to be repeated
and that re-inspection and testing may be necessary. To be compatible with ‘purchasing’, the
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rework price here should include the production costs already invested in the unit to be
reworked.

Timeliness of procurement alternatives is another important factor in this decision. Waiting
for externally purchased units to arrive or for rework to be completed will increase the lead
time of the final product. It also seems important to note that, although the probability of
their occurrence can be substantially reduced, when yield is stochastic, time is limited and
rework is not possible, shortages carinot be avoided. Given the estimates of the purchasing
(or rework) cost per unit at each stage, the profitability of these activities (at each stage) is
affected by the number of additional non-defective units to be procured (if at all), calculated
as the difference between the ‘procure up to’ point and the yield of the previous stage. Initial
intermediate inventories are also considered.

The rest of the paper is organized as follows. The current model is described in the next
section, followed by its detailed solution, which also contains general properties of the critical
numbers (control limits), specific decisions as dictated by special procurement circumstances
(unavailability, zero cost, limited quantity) as well as yield modelling and estimation.
Numerical examples are then presented, being followed by the case where it is possible to
carry out additional production runs. The paper ends with some concluding remarks and
suggestions for future work.

MODEL FORMULATION (SINGLE PRODUCTION RUN)

As mentioned above, a discrete, N-stage system with a given demand, D, for non-defective
finished units is considered. It is assumed that a single production run is to be carried out and
that, at its end, a linear penalty cost for shortage, or a linear overage cost, may be incurred.
The non-defective units at any stage i, i =1, 2, ..., N, are independently generated with
equal probability P; (a stage dependent parameter). Hence, the number of non-defective units
produced at stage i, obeys a binomial distribution with parameters P;, 0 < P; <1 and U, the
input batch size at the same stage. After performing perfectly reliable, 100% inspection of the
production output from the previous stage and discarding all the defective units, a decision
has to be made regarding the number of units to be processed at the next stage. Our decision
formulation allows for three alternatives.

(A1) Processing all the non-defective units available from the previous stage.

(A2) Reducing, with per unit cost, the available input by disposal of some units.

(A3) Increasing, with per unit cost, the available input by purchasing additional non-defective
semi-finished units, or by reworking some of the defective units.

Units may be purchased from other companies, or may be leftovers (meant for other final
products) which became superfluous as a result of applying A2. (With a view to reducing
inventory space, eventually only leftover units common to many final products would be
stored.) If leftover units are used, the costs invested in their disposal can be considered sunk
costs and, accordingly, their assigned procurement cost is zero (see also ‘Remarks’).
The following notation will be used:
D = the known demand;
i = stage index chosen to represent the number of remaining stages until the end of
the manufacturing process, i = 1,2, ..., N;
y; = the available input to stage i, which is equal to the yield (non-defective units) of
the previous stage (stage i + 1 according to the current notation);
U, = the decision variable at stage i, representing the input to the ith stage;
p; = the probability of producing a non-defective unit at stage i;
P,(x|U,) = the probability of a yield x arising from an input to the ith stage of U;;
w; = the manufacturing costs per unit (including inspection) at stage i;
h; = the disposal cost per available non-defective unit at stage i;
r; = the procurement cost per non-defective semi-finished unit at stage i;
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h, = the overage cost incurred by producing one finished unit above the demand;
7 = the shortage penalty per unit of unsatisfied demand.
Two interrelated functions are defined.
C:(y;) = the minimal total expected cost given that the available input to stage i is y; and an
optimal policy is carried out from stage i throughout the remaining stages.
F,(U,) = the minimal total expected cost, given that the input to the ith stage is U; and an
optimal policy is carried out in the subsequent stages.
The connection between these functions based on our decision-modelling is expressed by
the following equation.
Foreveryl<i=< N,

Ci(y) = min {Fy(y)), min[F(y; = J) + jh), min[Fi(y, + &) + kril} M
where
F(U) = wU, + %;Ci_l(x)Pi(x|Ui)
and )
F(U,) = w Uy + nng(D — x)Py(x|Uy) + hOED(x — D)P\(x|U;) )

A basic condition, C1 is assumed (an analogous assumption was presented by Lee and
Yano!®), namely that it is less expensive to remove an acceptable unit before a given
production stage i, than to invest in its production and remove it at the next stage, i — 1:

C].: hi<w,-+p,vh,»_1 fOI‘ l=1, 2,..., N.

Our objective is to determine Cy(yy) as well as the optimal policy at any stage i, i =
1,2, ..., N. The procedure is depicted in Figure 1.

Manufacturing Inspection Decision Manufacturing
stage i+1 (Preceding stage i) node i stage i

Aj Purchase
additional units

A : Yi ﬂ
Ui»'\ w ! Available ? Ui k'/

units Production
Batch
Uig 7Y
(Scrapped units ) Az
Dispose of some
units

FiG. 1. The general topology .

THE SOLUTION APPROACH

The structure of the recurrence relations defined above suggests a dynamic programming
formulation. First, the case of one more stage left to the end of the manufacturing process is
considered.
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The single stage formulation

F;(U;) has an essential role in defining C,(U,), since the optimal policy relies heavily on
the discrete convexity of Fi(U,).

Definition 1

Discrete convexity —Assume a function F(U) to be defined only on the non-negative
integers. F(U) is a discrete convex function if and only if AF(U) is a monotone increasing
function of U, AF(U) being determined as: AF(U) = F(U + 1) — F(U).

Let us now examine some properties of Fi(U;).

Proposition 1

F;(U,) is a ‘discrete convex’ function possessing a unique minimum value at U; = U}.

Proof
For the proof see Appendix A.

The structure of the optimal policy
Proposition 2

Given y,, the available input to stage 1, critical numbers L,, M, satisfying L, < U} < M,
exist, defining the structure of the optimal policy (the input quantity U?Y) as follows:

U?=Y1 if Ly <y, <M, (3
M1 ify1>M1

Proof
We divide the proof into two cases.
Case 1: y, < UF}

The discrete convexity of F;(U;) implies that it is better to produce more than y,. Hence,
an additional amount, k, of the non-defective semi-processed units should be procured to
supplement the currently available input y;. The optimal procurement is determined by
referring to the last term in (1). By substituting y; + k& with U;, the following minimization
problem is obtained:

11111121;11 {Fi(Uy) + r(Uy — y1)} 4

Let us define: G(U,) = F(U;) + ri(U; — y;)

Based on Proposition 1 regarding F;(U,), it is easily proven that G,(U,;) too is a discrete
convex function, having a unique minimum value denoted by L;, with L, being the lowest U,
satisfying AG,(U;) = 0. To prove that L; < UY, we first note that AF;(UY) > 0 also implies
AG{(UY) > 0. The monotonicity of AG;(U;) completes the proof. Thus, the solution of (4)
is:

0 {Ll ify, <L,
U1= .
Y1 if L1 <y1 < Ul‘
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Case 2: y, > U¥

In this case it is more profitable to remove some of the above available input. Following an
argument similar to the one used in case 1, the following minimization problem is obtained:

l?llgll{Fl(Ul) + hi(y, — Uy}. ‘ Q)

Let us define: H,(U,) = Fy(U,) + hi(y; — U)).

As in Case 1, we conclude that H,(U;) is a discrete convex function. Condition C1
guarantees that H,(U,) attains its minimum at U, = M;, M, being the lowest U, satisfying
AH(U))=0.

To prove that U < M, let us assume that the contrary is true, i.e. that U > M,. It is
easily seen that in this case A H;(M;) <0, thus contradicting the condition AH (M) =0.
Hence the optimal policy is:

UO_{yl if U < y,< M,
0 _

M, ify,= M,.
This completes the proof of (3).

Corollary 1

(a) UT is the lowest U, for which AF;(U;)=0.
(b) L, is the lowest U, for which AF,(U;) = —r;.
(b) M, is the lowest U, for which AF;(U,) = h;.

The N-stage formulation

Thus far, we have examined the case of one remaining stage to the end of the production
process. By backward induction the N-stage problem will be solved.

Theorem 1

(1) F,(U,) is a discrete convex function possessing a unique minimum value at U; = U7.
(2) Every stage possesses critical numbers L;, M, satisfying the following properties.
21) L,sUf<M,.
(2.2) U} is the lowest U, for which AF,(U;)=0.
(2.3) L, is the lowest U, for which AF;(U;) = —r;.
(2.4) M, is the lowest U, for which AF;(U;) = h;.
(3) The optimal input, U % is determined by the optimal policy:

L, fory, <L,
Ul=1y for L;<y <M, (6)
Mi fOI‘ yi = M,‘.

The proof of this theorem follows similar arguments to those of the single stage case and is
detailed in Appendix B where the discrete convexity of F;(U,) is established.

The minimal total expected cost, C;(y;) as a function of the available input at stage i, y;, is
portrayed in Figure 2.

Sufficient conditions for L; >0, U; >0and M;>0fori=1,2,..., N based on AF;(0) are
formulated in the following theorem.

Theorem 2

(1) L, >0iff AF,(0) + r; <O.
(2) U; > 0 iff AF;(0) < 0.

(3) M; > 0iff AF;(0) — h; <O.
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!
|
I
I

Li ui Mi yi

FiG. 2. The expected total cost over the remaining stages as a function of the available input y,.

The recurrence equations that determine AF;(0) and some special cases appear in
Appendix C.

SOME REMARKS

1. Order relations among the critical numbers (control limits)

(a) At any given stage i, the value assumed by an upper control limit is no lower than that of
the respective lower control limit.

(b) The lower control limits increase with the number of remaining stages until the end of the
manufacturing process, i.e. L;<L;,; for i=1, 2, ..., N —1, provided it is less costly to
procure a non-defective unit at stage i + 1 and invest in its production at i + 1 than to procure
it at the next stage i. This condition is expressed by inequality C2 and is presented below in
terms of a lower threshold for r;. (It also appears in Appendix C as special case 1 of Theorem
2))

C2: r,»>(ri+1 + Wi+l)/pi+1 for i = 1, 2, ooy N —-1.

ry denotes the raw material cost per unit.

The actual procuring price may be much higher, especially for a low i (a late manufacturing
stage) where it is less likely to find other final products sharing common semi-finished parts.
As the product nears completion, the economics of rework (if possible) tend to become
increasingly attractive'®,

(c) In Theorem 1, the upper control limits exhibit the same relationships, M;< M,,; for
i=1,2,..., N—1. (See also special cases 1 and 2 in Appendix C.)

2. Degenerate control limits

This situation may arise when the lower control limit only, or when both control limits,
assume a zero value for some stage.

(a) The implication of such an outcome concerning solely the lower control limit, L;, is that
the optimal policy discourages procurement at stage i. In Theorem 2, this occurs mainly if at
the next stage, i —1, the procuring cost r;_;, for i >1 is below the threshold C2 (see



M. Barad and D. Braha—Control Limits for Multi-stage Manufacturing Processes 105

Appendix C for recurrence equations of specific cases and also numerical examples in the
next section). Unavailability of a specific semi-finished product may be modelled by arbitrarily
assigning a high value to r;, (r;— ). Although originating from a somewhat different
situation, the outcome will be the same, namely, a zero valued lower control limit at stage i.

(b) A different type of ‘degeneration’ arises when, at some stage i, both the lower control
limit, L;, and the input to the ith stage, U;, (or eventually the upper control limit M; as well)
assume a zero value, L; = U; =0 (or L; = U; = M, = 0). In Theorem 2, this happens when it
is cheaper to procure externally a non-defective unit at a later stage j (j > i) than it is to
produce it at stage i. Under these conditions the producer should revise the decision ‘produce’
versus ‘supply’ (see Appendix C and numerical examples).

3. Zero procurement cost of new material and semi-finished products

Suppose the available supply of raw material (yy) is abundant and free. In this case the raw
material cost per unit, ry, assumes a zero value. Hence, by applying Theorem 1, it is easily
seen that the lower and the higher critical numbers at the first manufacturing stage i = N
(i.e. N remaining stages) are equal to the optimal batch size, i.e. Ly = My = U N=U%.

The lower critical number is equal to the optimal batch size (L; = U}) at any other stage i,
i < N, provided the cost of the semi-finished units is zero and their amount is not limited.

4. Limited supply of semi-finished procured units

(a) The general model was extended in Reference 19 to account for a limited quantity of
semi-finished units that can be procured from an outside source. Briefly stated, let v,
designate a limited supply at stage i. Accordingly, the amount to be supplemented at stage i
(for L; > y,), will be: min {L; — y;, v;}.

(b) Initial intermediate inventories (limited supply with zero procurement cost). An initial
inventory of non-defective units, S;, at stage i, i=1, 2, ..., N is a realization of zero cost
semi-finished units with given limited supply. It is shown' that the structure of the optimal
policy is now stated as follows:

L, if y, + S, < L,

yi + S ifL, <y + S <Uf
vl=1 u: if yy,<Ufand y, + S, = U}

Vi if Uf <y, < M,

M, if y, > M,.

5. Yield modelling and estimation

Binomial models as such, and simple Poisson distributions that may be considered
approximations of binomial models, play an important role in modelling yield. In the
much-researched area of semiconductors, compound Poisson distributions are used as discrete
models to describe clustering of defects, while Gamma distributions, representing continuous
models, are successfully employed to the same end”’. The advantage of the Poisson model is
in its sound theoretical basis for inferring the defect density of existing products and for
estimating the new product yield*!. As detailed there, in practice the yield is measured as the
average fraction of devices on a wafer that pass all tests, per area Ay, denoted Y,(Ao).
From this ‘observed’ yield a defect density is inferred, D;;(Ao), based on the assumed form
of the area orientated distribution of defects, D;(Ay) = f [ Yos(Ao)], where f71[.] is the
inverse function of that relating yield to defect density. This result is further used to ‘estimate’
the new product yield per area A, D(A): Dey(A) = 0D;(Ap), where o is the magnitude of
the scale factor. See also Cunningham? for an estimation and prediction of yield parameters.
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Instead of considering an assumed theoretical distribution, empirical yield distributions are
sometimes directly applied. It is noted that such yield distributions may represent mixtures of
‘good’ and ‘bad’ lots. While such mixed yield distributions are adequate for aggregated cost
estimates, they may not be so for optimal decision making. To that end, it may be more
advantageous to separate the yield distributions of ‘good’ and ‘bad’ lots since each may -
require a different optimal policy.

SOME NUMERICAL EXAMPLES

Let D =40, N=4, h,=20, S§;=0for i=1, 2, 3, 4 and the other stage parameters be as
follows.

Stage i w; h; P,
1 2 2 0.8
2 2 2 0.8
3 6 2 0.8
4 6 2 0.8

Three sets of procurement costs, r; values, and two shortage penalty costs, 7 =52 and
7 =100 for each set are considered. The first set of procurement costs obey the conditions
ensuring L; < L;,; for i =1, 2, 3 while the second and the third sets do not. The Normal
Approximation to the binomial distribution is used to calculate the optimal parameters at
each stage. The following results are obtained.

Set 1 T =152 7 = 100
Stage i ri L, U, M, L; U; M,
1 27 47 52 52 50 53 53
2 19 54 66 69 57 69 71
3 9 64 77 79 67 81 83
4 1 79 85 90 83 88 94
Operating costs: 1364.13 1435.32
Set 2 T =52 7 = 100
Stage i T L; U; M, L, U; M,;
1 50 0 52 52 48 53 53
2 32 0 66 69 58 69 71
3 25 0 78 80 0 83 84
4 1 90 91 94 97 98 100
Operating costs: 1390.76 1485.74
Set 3 T =52 7 = 100
Stage i r; Li U,‘ M,’ Li Ui Mi
1 50 0 52 52 48 53 53
2 13 60 66 69 64 69 71
3 9 0 77 80 0 81 83
4 1 0 0 0 0 0 0

Operating costs: 1136.53 1207.24
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The operating costs as presented do not consider the raw material costs. It is assumed that
the manufacturing process starts with an optimal number of units entering stage 4.

Set 1. It is seen that both control limits increase with the number of stages remaining until the
process ends. The operating costs are higher for the higher shortage penalty case and so are
the respective control limits (lower and upper) at any given stage, as compared with those
obtained for the lower shortage cost at the same stage. The widths of the control limits are
about the same for the two penalty levels and do not seem to be affected by the stage
number.

Set 2. Through the recurrence equations supporting Theorem 2, a procurement ‘bargain’ that
is offered at stage 2 (r, = 32, r, < (r; + w3)/P;), has a different effect on the optimal decision
policy depending on the shortage penalty level. The optimal policy does not take advantage of
the ‘bargain’ when a low penalty is in effect. With the exception of Stage 4, all lower control
limits, including Stage 2, assumed zero values. It seems that the purchasing price is still too
high for the low level shortage (52). Under a higher shortage penalty (100), the optimal policy
reacted as predicted, namely it displayed a zero lower control limit at Stage 3, which preceded
Stage 2 where the bargain was offered. Then, at Stage 2, procurement was encouraged
through the existence of a strictly positive lower control limit. A strictly positive lower control
limit was also exhibited at Stage 1 where, compared with the relatively high shortage penalty,
the procurement cost (50), was again economically attractive.

Set 3. Another procurement ‘bargain’ is offered at Stage 2. This time the conditions are such
that the bargain is economically attractive even under a low-level shortage cost. This
attractiveness is revealed in two ways: first (as expected) in terms of a positive lower control
limit at Stage 2, but then also through a more unusual outcome. Both lower and upper
control limits had zero values at Stage 4 (the first stage in manufacturing order). The meaning
of this result is that it is not economical to produce at Stage 4, but only at the next Stage 3
(second stage in manufacturing order). However, procurement at Stage 3 is discouraged
(L; =0). Accordingly, a feasible solution (through an interpretation of this result) would be
to start production only at Stage 2 (Stage 3 in manufacturing order). The low operating cost
as calculated for this situation reflects promises of economic benefits, likely to occur from
replacing the current decision to ‘produce’ at the first and the second manufacturing stages
(remaining Stages 4 and 3 here) by a decision to ‘procure’. Hence, for production to be
optimal it should start at the manufacturing Stage 3 (remaining Stage 2 here) using as raw
material the intermediate material at Stage 2. Under these circumstances, from a pragmatic
perspective it becomes very important to ascertain the reliability of the supplier, with respect
to both quantity and quality of the semi-produced product, which will thus become the raw
material. Another possibility would be to consider drastic improvements (reduced manufactur-
ing costs and/or yield) of Stages 4 and 3 so as to make them compete successfully with the
price offered by the external supplier.

MULTI-PRODUCTION RUNS

Let us now consider the possibility that if, by the end of a production run, the number of
final, non-defective units produced, falls short of the given demand, additional production
runs may be carried out. Overlapping of production runs is not encouraged, since in this case
the decision on the quantity to produce is complicated by having to rely on partial
information about the unsatisfied demand. Hence, an additional production run will not be
practical unless the length of the period up to the delivery date is several times that of the
expected duration of a single production run.

A few authors!*~% have considered additional production runs to satisfy a make-to-order
demand for the single stage problem. In most of these papers it was assumed that the number
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of non-defective units in a batch follows a binomial distribution. Bowman and Fetter (see
Reference 23, pp. 324-330) considered set-up costs for each additional production run.

Here we are concerned with extending the single production run N-stage formulation, to a
multiple production run problem, using a similar scenario. It is assumed that the maximum
number of production runs (M) that can be carried out to satisfy the make-to-order demand -
is given. In practice, M can be assessed through dividing the (contracted) delivery period by
the estimated duration of a single production run. The developed procedure is compatible
with two versions. One version assumes that no set-up is needed for launching an additional
run, while in the second version a positive set-up is assumed and, accordingly, an economic
decision has to be made at the end of each production run on whether or not it is worthwhile
to start a new one.

A decomposition approach

To amend the model for a multiple production run formulation, a function Fi(U;, D"),
representing the minimal total expected cost, given the remaining number of runs ¢, (¢t =1, 2,
..., M), the input to stage i, U;, (i=1, 2, ..., N) and the unfulfilled demand D’, was
defined. As it was shown that, for ¢ > 1, non-convex functions may be obtained'’, an optimal
policy with a structure similar to the one formulated for the single run, could not be
determined. Hence, the solution builds on the single run analytical result by developing an
approximation in which the problem is decomposed into a series of single runs. The
approximation assumes that Fy(U%, D') (the minimal total expected cost given that a
production run intended to satisfy the given demand D’, starts with an optimal input, U%) is
linear in D’. If follows that at the end of any run ¢, ¢ > 1, the shortage penalty 7' can be
approximated as the optimal total expected operating cost of the next production run, ¢ — 1,
for a given unsatisfied demand of one unit (D~! = 1). For ¢ = 1 the shortage penalty assumes
its original value, 7' = 7. To estimate 7’ for t =2, 3, ..., M, the system was first operated
backward, run by run. Then the operating procedure is run forward to determine the
‘optimal’ decision variables and the expected cost at each run.

Algorithms were developed for each of the two versions of this procedure and experiments,
with varying values of the parameters involved, were conducted. The insights obtained are as
follows.
® The shortage penalties 7' (at the end of a given number of remaining production runs ¢,

t >1) expressed as ratios of the final shortage penalty, 7, show (for all cases) an

asymptotic decrease with the number of the remaining runs ¢. Accordingly, when the first

version (no set-up) is run, the total expected cost decreases with the maximum number of

production runs allowed, M.
® Similarly to the single production run, zero valued lower control limits (prohibiting

procurement) were obtained for high procurement costs at intermediate stages.
® When only one additional production run is carried out, the resulting reduction in the total

expected operating cost (expressed as a percentage) is higher for a higher shortage penalty.

This reduction is only slightly affected by ‘active’ procurement at intermediate stages and

decreases with the shortage penalty. '

CONCLUDING REMARKS

® A decision model for a multi-stage process with discrete distribution of yield losses (related
to the input levels), has been presented. Allowing for purchasing of intermediate products,
or carrying out rework at intermediate stages, requires an optimal policy defined by two
critical numbers (control limits).

® It is proved that the policy of removing non-defective units (one critical number) is a
special case of the more general model as presented here. This structure of the optimal
policy, extending the multi-stage model of Lee and Yano® (which proved the optimality of
a single critical number), will also hold for the stochastic proportional yield model under
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similar cost modelling, and can thus be considered as an extension of Wein’s model* as
well.

® As the multi-production run formulation of this problem shows that there is no simple
‘optimal’ policy, an approximate approach was developed to find ‘good’ control rules. This
approximation enabled us to accommodate two modelling variations of the system (with
and without a set-up cost for starting an additional production run).

® Further research on the discrete modelling of such systems may enhance the current
assumptions.
Some related issues follow.

Quality improvement and yield modelling

The economic implications of improving the quality of the product at each stage may be
taken into consideration as a possible enhancement of the model®. Such a possibility may
especially be fruitful in wafer fabrication processes, where some authors report a U-shaped
distribution of the yield®, which may reasonably be a result of mixed batches of varying
quality levels.

A more sophisticated mechanism for the yield such as clustering of defects (found
appropriate in some production processes like IC fabrication?’) may be also considered.

Economic location of inspection stations and inspection reliability

In the current work we assumed that preceding each manufacturing stage, a perfectly
reliable inspection station was located. By removing these restrictions, the procedure may be
modified to handle situations connected with the selective location of inspection stations®, or
coping with unreliable inspection. Optimal decisions should consider trade-offs between the
cost of carrying out the inspections and the economic benefits of the information they
provide, in a production system abiding by ‘control limits’, such as the above.
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APPENDIX A

Proof of Proposition 1
From (2) we get:

FU +1)=w(U +1) +7> (D - x)P[x|(U + 1]+ h, > (x — D)P[x|(U; + 1)].

x<D x>D
(A1)
Using elementary probability theory, we obtain for any x > 0:
Pi[x|(Uy + 1] = p1Pi[(x — D|UL] + (1 = py) Pi(x|U)). (A2)
Substituting (A2) in (A1) and rearranging yields:
AF(Uy) = wy — pim + pi(m + ho)¥1(U)) (A3)
where,
W, (Uy) = Pi[x = D|U,]. (A4)

Since for every U; = D, the function W,(U) is strictly increasing in U;, on (A3) we conclude
that AF;(U,) is a monotone increasing function of U;.
To show that F;(U,) attains a unique minimum, we note that

lim {¥,(U,)} =1,
Up—>



110 Journal of the Operational Research Society Vol. 47, No. |

thus implying
Ulim {AF,(Uy)} = w; + p1hy > 0.
e

Hence, we conclude that F;(U,) is not strictly decreasing, which completes the proof.

APPENDIX B

Proof of Theorem 1

Here we provide a proof of Part 1. Parts 2 and 3 of Theorem 1 can be established in a
manner similar to that used in Proposition 2. The proof of Part 1 is by induction on the
number of processing stages. For i = 1, Part 1 reduces to Proposition 1.

Assume that Part 1 holds for stages 1, 2, .. ., i.

By conditioning the expected cost F;,;(U;.;), on x and using the induction hypothesis, we
obtain:

L M1
Fioi(Uisy + 1) = D [F(L;) + r(L; = x)]Pisy(x|Uisy) + > Fi(x) Py [x|(Uisy + 1)]
x=0 X=Li+1
U/+l+l
+ D [FU) + hi(x = M)]Pi1(x|Uis1) + wis(Upipy + 1). (B1)
x=M;
Let us use the following property:
Pi[x|(Upey + D] = piai Pi[(x = D|Ui1] + (1 = pis1) Pia (x| Usyy). (B2)
Substituting (B2) in (B1) and rearranging, we get:
AF1(Uis1) = wiy + pis1Wi1(Uiy)  where, (B3)

L1 M1 U1
Wi(Uis) = {_HZ Pi(x|Uiy) + Z AF;(x)Py(x|Upsy) + by 2 Pi+1(x|Ui+1)}~

x=0 x=L; .’C=M,'
(B4)
Before we establish the discrete monotonicity of F,;(U,,,), let us prove that W, ,(U,,,) is an
increasing monotone function in U, ;. Substituting (B2) in (B4) we get:

Li-2
Yiii(Usr + 1) =1 = pi)¥Wia(Uisy) + Pi+1{_’i2 Py (x|Uiir)
=0

M-2 Uit
+ > AF(x + D)Piy(x|Uisy) + hy > Pi+1(x’Ui+l)}‘ (BS)
x=L;—1 x=M;-1

i

Transferring W,;,,(U,;,) to the left-hand side while substituting W, ;(U;,;) in the right-hand
side and changing the summations’ bounds, we obtain:

AW 1(Uiyy) = pi+l{[AFi(Li) + r]Pual(L; = D|U]

- [AFI(Mi - 1) - hi]Pi+1[(Mi - 1)|Ui+l]

M-2
+ Y [AF((x +1) - AFi(x)]Pi+1(x|Ui+l)}- (B6)

x=L;

i

Applying the induction hypothesis we obtain:

(1) AF(L)+r; >0

Q) AF(M; - 1) — h; <0

(3) AFi(x +1)— AF;(x)>0 for every non-negative integer x. Thus, we conclude that
AW;,1(Ui;1) > 0. By noticing that limy,, . {AF;1(Uss1)} = wieq + pirih; >0, we finally get
the desired result.
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APPENDIX C

Recurrence equations for AF;(0) and special cases of Theorem 2

AF;(0) is determined by solving the following recurrence equations.
1. For i = 1 we get from (A3):

AF,(O) = W; — piT.

2. For i > 1 three occurrences are possible. Hence, on (B3), we obtain:
21 L,_;>0[i.e. AF;(0) + r,_; <0] then,
AF(0) = w; — pm.
22 L,_;=0[i.e. AF;(0)+ r,_; >0]
and
M;_,>0[i.e. AF;(0) — h;_; <0] then,
AF0) = w; + p;AF,_,(0).
23 L,_;=0and M;_; =0 [i.e. AF,_;{(0) — h;_; > 0], then
AF(0) =w; + p;h;_;.
The following are two special cases.

Special Case 1

Consider examining Stage i and assume that L;_; > 0 (determined by applying Theorem 2
to Stage i — 1). It can be shown that

L;>0 ifandonlyif r,_, > (w; + r)/p; Fo =T (which represents condition (C2))
U,>0 ifandonlyif r,_; > w;/p; (C3)
Mi > 0 if and Only lf ri_l > (Wi - hi)/pi' (C4)

Special Case 2

Again consider examining Stage i and assume that L, =0 and M, >0 for every d <i
(determined by applying the recurrence equations to each stage d < i).

According to Theorem 2, M; > 0 if and only if AF;_;(0) — k; <O.

Applying the recurrence equation as appropriate here, namely, AF;(0) = w; + p,AF;_,(0)
(case 2.2), using simple induction to calculate AF; ;(0) and substituting in the above
necessary condition for M; > 0, we obtain, !

i-1
_hi + E[W,'_l
j=0

Hence, an analogous result to the one presented by Lee and Yano® is obtained. It should be
clarified that in contrast to Reference 3, where intermediate procurement is not considered,
this is a special case, obtained when the lower control limits assume zero values, i.e.
procurement is prohibited.

J J
p,-+1_k] —a[]pk<0=> M;>0 forevery i.
= k=1

k=1
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