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On the Complexity of the Design Synthesis Problem

Oded Maimon and Dan Braha

Abstract—In this paper we present and analyze a formal model of a
design process, emphasizing the synthesis part. The design artifact de-
scription is identified as an algebraic structure. The desired function and
constraints are mapped to the artifact description using an evolutionary
process that can be visualized as a feedback loop of analysis, synthesis
and evaluation. A special case of the synthesis activity, called the Basic
Synthesis Problem (BSP), is addressed. The BSP is shown to be NP-
Complete. As a consequence, tractability can be obtained by enforcing
constraints on. the artifact structure. As such, we present a model having
an element of descriptive design theory that is also a framework for
the future development of computational support systems and automatic
design tools.

I. INTRODUCTION

A. The Analysis-Synthesis-Evaluation (ASE) Design Paradigm

Design can be viewed as the process of developing a solution to
required specifications that performs some set of desired functions
and, with some degree of optimality, meets a set of resource usage
objectives. It involves wide use of domain specific knowledge and
considerable problem solving skills to come up with clear, concise
and unambiguous specifications of the designed artifact [9], [11].
There is no single model that can furnish a perfect definition of the
design process. However, the Analysis-Synthesis-Evaluation (ASE)
paradigm represents a widely held view in such diverse fields
as structural engineering [23], device design [20], and software
engineering [3], [21].

According to ASE, the design is thought to consist of three
logically and temporally distinct stages: a stage of analysis of the
requirements, then a stage of synthesis, followed by a stage of
evaluation [2], [7], [14], [23]. Analysis is described as involving
the identification of all possible factors that may be relevant to the
given design situation, determination and resolution of all interactions
among the factors and the eventual reduction of these factors to a
complete set of specifications. Synthesis involves the construction
of partial solutions for each of the distinct specifications and the
integration of these partial designs into a complete form. Finally,
the evaluation phase is concerned testing the design produced by
the synthesis phase against the specifications identified during the
analysis phase. In the event alternative forms were produced during
synthesis, this is also the stage in which a choice is made between the
alternatives as a result of evaluation. Several instances of these three
phases may be required in order to progress from a more absiract
level to a more concrete level. The ASE model of design process is
inherently iterative; the designer repeatedly goes back to refine and
improve her design until the design satisfies the requirements.

B. Scope and Organization of the Paper

This paper develops a generic formalism that aims to explain how
design artifacts are represented, and how design processes concep-
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tually perform in terms of knowledge manipulation (as captured by
the ASE-based design paradigm). In this study, the term “design”
is defined as a process. Given a description of a desired function
and constraints, called specifications, provide a representation of
an artifact that produces the function and satisfies the constraints.
This representation, called artifact description or artifact structure, is
identified as an algebraic structure. The mapping from functional
requirements to artifact structure is identified as an evolutionary
process consisting of similar activities (modeled through finite-state
automata) repeated in a cyclic fashion. We address here a special
case of the synthesis activity called the Basic' Synthesis Problem
(BSP). The term “basic synthesis” used in this study is defined as the
complete specifications of ‘primitive’ componrents and their relations
so as to meet a set of specifications of satisfactory performance.
‘We show that the decision problem concerning the existence of a
‘satisfying’ artifact is NP-Complete. By enforcing certain constraints -
on the artifact structure, we obtain upper-bounds on the number of
possible design solutions. These bounds are instrumental for devising
a heuristic strategy for the BSP. Thus our results are guidelines for
developing algorithms to search for optimal and suboptimal design
solutions.

The rest of the paper is organized as follows: Section II provides
two scenarios of real engineering design problems, given to gain
some insight into the design process and to motivate the proposed
model. The design process model is presented in Section III. Section
IV addresses the BSP and proves its computational intractability.
The consequences are then explored. In Section V, we examine the
class of Constrained Basic Synthesis Problems (CBSP). We use an
information-theoretic approach to derive a universal upper bound on
the number of possible design solutions. In Section VI, we derive
a refined upper bound on the number of possible design solutions,
assuming a probabilistic search strategy for solving the CBSP. Section
VII concludes the paper.

II. TWO SCENARIOS OF ASE-BASED DESIGN METHODS

Before we discuss more closely the ASE model and its compu-
tational aspects, it is useful to consider some specific instances of
design processes that appear to follow the paradigm. These examples
will also serve to illuminate certain points of discussion later in the
paper.

A. Mechanical Fasteners Design

The design of mechanical fasteners is a common design problem in
the realm of mechanical engineering. The function of a fastener is to
hold two or more parts together. There are numerous types of existing
mechanical fasteners (see Fig. 1). The proposed problem is to design
a new fastener according to certain given specifications based on the
knowledge that we already have from the existing fasteners. At the
lowest level, a fastener might be described in terms such as head
radius, thread pitch, and thread depth (assuming that it has threads).
Functional requirements, however, usually do not come so neatly
packaged. Instead, the requirements usually start out at a high level
(such as the strength or precision of the fastener). From these higher-
level requirements, a more detailed description evolves through the
design process.

1) The Knowledge-Base: The first step is to build a data base
of this knowledge. The existing designs are represented in a set
of design descriptions that include structural, functional and the
causal relationships between function and structure. The structural
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Fig. 1. Fasteners in the knowledge base.

description of the device and its components are listed. In the case of
fasteners, the general hierarchy is composed of the five components
that are common to all fasteners; drive, head, body, tail and a tip as
shown in Fig. 2.

The behavioral abstraction of a design is usually determined by
the structural hierarchy. For instance, the function of a fastener is to
hold two or more parts together. This is done by the fastener which
transmits the load to the fastened parts. The relation is usually in the
form of a causal one governed by the physical laws. The behavior
of the components follows the same principle. For an illustration
of the relationships; the strength of the fastener is determined by
the static fatigue, stress rupture, and impact strength. The fatigue is
determined by the material, head size, thread size, threaded length,
fillet, fabrication, and surface structure. Those properties, in turn,
are determined by the physical attributes of the components and
entity. The same would apply for the rest of the properties of the
fastener. This would be captured and represented as the causal and
factual knowledge of the system in a causal network and as an if-then
structure. These structures would link the functions to the attributes
and the attributes to the components.

2) The Task: To perform the synthesis task, the system is designed
to transform functional specifications to a structural descriptions. A
typical input to the design system is a conjunction of functional
attributes. The program task is to propose a fastener design which
will meet a particular set of functional requirements. The result of
applying the above design procedure to an input specification is a set
of possible solutions, each of which consists of a set of five structural
attributes corresponding to the five parts of the fastener structure.

3) A Run Time Design Process: For our fastener design, the initial
functional requirements come down as. The ‘LEGAL’ requirement
indicates that the design solution should be given in terms of its five
structural attributes (corresponding to the five parts of the fastener
structure; i.e., drive, head, body, tail and a tip). The first iteration
may be to realize that strength is characterized separately by the head

Fig. 2. Hierarchy structure of a fastener.
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and tail of the fastener. By applying the knowledge-base of fasteners
and analyzing the current requirements, it is concluded that both of
them -demand high strength. The second iteration may be to get a
better definition of retractibility. There is a choice of how fasteners
are driven and that in order to get high retractibility we need rotary-
mode fasteners. In the next iteration, we realize that medium precision
translates into a looser body fit. At some point, synthesis decisions
begin to be made as the final configuration of the design begins to
take place. From the current information, we infer that the head of
the fastener needs a shoulder. And that the tail of the fastener will be
fastened using threads. And that the drive type will be a hex head.
And that the body will have threads. In the next synthesis state, it is
found that the threads-type tail of the fastener derives the requirement
of TAIL-MODE-ROTARY. Since this structural attribute is already
fixed, the design part and the specification part remain unchanged.
Finally, by testing the tentative part against the specification part
it is concluded that all specifications are satisfied except for the last
requirement (LEGAL). A misfit still remains since the tip part was not
determined as yet. The transition strategy is to determine an attribute
for the tip part, which is not in conflict with the already satisfied
specifications. Hence, it was decided that the tip of the fastener should
be chamfered in order to maximize reversibility. This process can
be continued until the physical attributes of the final fastener are
discovered (see Figs. 3-11).

B. A Supercritical Fluid Chromatography (SFC) Design [23]

SFC is a device which provides detailed analysis of a chemical
mixture. A brief sketch of the evolution of the SFC is as follows:
By studying the literature and understanding the chromatographic
process (an analysis activity), designers arrive at a tentative design
solution (a synthesis activity) which consists of pump, control and
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oven units. The oven unit is further divided into injection, oven and
detector units (a synthesis activity). This tentative design amounts to
the following behavior: carbon dioxide is compressed to the desired
pressure and pumped into the column and the detector, afterwards
the sample mixture is injected through the injector and transported
to the column by carbon dioxide where separation takes place. The
detector controls the pump unit by detecting the amount of the various
compounds of the sample mixture.

Let us examine the (partial) evolution of the design pump unit: The
initial design specifications were stated as: 1) it has to be pulseless,
2) it should be able to compress carbon dioxide. By invoking a
large knowledge-base and analyzing the initial design specifications,

Design Part (m)

Fig. 8. Synthesis state 5 (partial).
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the designer came up with a syringe pump. After choosing the
type of the pump, an additional specification derived was: 3) the
number of experiments with a single filling should be optimized. This
specification was modified to the following specification: 4) the pump
must be large. Based on previous knowledge, the designer refined the
specifications regarding the pump to include the design of its subunits,
involving the power source, cylinder, gear, stepper motor, etc.

III. THE MODEL

A complete modeling of the design process must answer three
fundamental questions: how is the entity (artifact) representation and
knowledge structure generated, how are the specifications (a set of
constraints or requirements) represented, and how is the process (the
mapping from the requirements to the artifact structures) represented
and executed? In this section we present only the essentials for the
understanding of the forthcoming discussion on the characterization
of the synthesis activity. For a detailed definition of the design process
see [19].
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Definition 1 (Design Process): The design process model is
denoted by the tuple DP = (D,L,A,S,E). D specifies the
artifactspace, which consists of various components, some of which
are generated as part of the solution description. L is the set of
explicit constraints (or specifications) posed on the problem. The
analyzer (A) and the synthesizer (S) are transformation operators
that utilize domain knowledge and generate new sets of—possible
abstract—specifications and solutions, respectively. The evaluator
(E) evaluates the current design produced by the synthesis step by
testing it against the current specifications.

A. Artifact Space (D)

It is obvious that the ability to analyze, model, and describe
design artifacts in a precise, formal and unambiguous manner is not
merely desirable but imperative. For only then can one attempt to
test a design against the requirements and determine unambiguously
whether or not the former satisfies the latter. Therefore, the artifact
space is based on the postulate that any knowledge representation
is built upon the multiplicity of objects (henceforth modules) and
relationships (henceforth relations) among them. Consequently, the
design artifact is represented by a pair (M, C). M stands for the set
of modules which the artifact is comprised of; and C denotes the
set of relations that represent the relationships among the modules.
In order to capture the essence of design, a hierarchical construction
of systems from subsystems is also developed. Consequently, the
universal set of modules is classified into basic and complex modules.
Basic modules represent entities that can not be defined in terms of
others. Complex modules are defined hierarchically in terms of others
modules, where the interaction effects are captured.

Definition 2 (Artifact Space): The artifact space is denoted by the
tuple (M°,C°, M*). Let us discuss each component in turn:

Primitive Modules: M° denotes the set of primitive modules.
Primitive modules can not be defined in terms of other modules
(except trivially by themselves). The set M° represents primitive
components which can be assembled to construct complex modules.
Consider for example the design of a computer environment (e.g.,
communication networks): The basic modules can be programs, data
files, subroutines. In the design of an analog circuit primitive modules
represent resistors, capacitors, operational amplifiers, diodes.

Relations: C° denotes a preassigned universal set of relations. ¢ €
C° denotes a collection of tuples, each representing a relation among
the elements within the tuple. The relationships among modules may
also be expressed in nonnumerical terms (e.g., using symbolic logic).
Consider for example the design of an analog circuit. The relations
among primitive modules may be represented by ‘information’ and
‘physical’ relations among capacitors, resistors etc.

Complex Modules: M™ is a universal set of modules, e.g.,
M* = {Primitive modules} U {Complex Modules}, where a
complex module is defined hierarchically in terms of previously-
described modules. Since this definition is hierarchical, the
terms ‘artifact, ‘complex module’ and ‘module’ are used in-
terchangeably. Let an artifact, m € M?™, be defined by a set
C C C° such that C = {citier, where ¢; = {M;, =
(M, Miz, .o, Min )k ci({miz, miz, ... ,min)k) is true}  C
(M™)"; with ¢;({mi1,m42,...,min)x) being a formula associated
with the relation ¢;, and (M™)" is a Cartesian product of n copies of
the set M ™. The kth element M; ; of c;, is termed as an assignment
of the relation c;.

Hence, a system m is defined in terms of a set {M «} and a set
C, such that C C C°; and M; . denotes an ordered set of modules.
Denote M = |J; , M« as the set of labels that can be assigned to
the relation set C'. For convenience the notation m = (M, C) is often
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Fig. 12. The piston subassembly of a model aircraft engine.

used. The set of artifacts that can be described over a set of labels
M and a set of relations C is denoted as (M, C).

Example 1 (Piston Subassembly): That any knowledge represen-
tation is built upon the multiplicity of objects and relationships
among them is an empirical proposition for which evidence has
been provided in [4], [17]-[19]. Unfortunately, space limitations
confine us to only a few examples in this report. Here we provide
further evidence corroborating the proposition by demonstrating
how traditional computer models of geometrically complex objects
conform to the entity-relational knowledge representation postulate.

The problem of building computer models of geometrically com-
plex objects has been addressed in the context of graphics [5],
computer aided design [25] and mechanical assembly [16]. Two major
methods have been devised. The surface approach [1] describes the
surfaces of the objects by specifying the vertices and edges of the
faces of polyhedra or, for curved objects, the crossections or surface
patches. The solid approach [5] approximate complex objects by
composing several simpler volumes. There also exist some hybrid
systems that allow both types of descriptions.

The Artifact Description: Fig. 12 shows a piston subassembly
from a model aircraft engine. Fig. 13 shows a schematic description
of the parts in the piston component subassembly. The parts
are arranged hierarchically, where any desired subparts can be
represented as nodes in the part model trees. Each node has
information regarding the size, type and relative position of the
subparts. All the subparts, including holes, are approximated as
rectangular or octagonal right prisms. This provides a uniform
internal representation for all the object types. This representation
simplifies the definitions of the spatial modeling operations. By
generalizing to polyhedra we could approximate the desired volumes
to any required accuracy.

The Formal Representation Scheme.

Primitive Modules:

* Polyhedral solids whose crossections are regular polygons. For
example: 1) rectangular solid, and 2) octagonal solid which is
meant to approximate a cylinder.

 Properties, attributed to primitive objects, that specify their size
parameters, vertex points, equations for the planes of the faces,
generalized position and orientation, etc.
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Fig. 13. The tree-structured relationship of parts in the piston subassembly.

Complex Modules: Complex modules are represented as unions
of other objects (primitive as well as complex). Holes and cut-outs
can be treated uniformly as objects by allowing primitive objects to
have negative volumes. For example, the cavity of the piston, shown
in Fig. 12, can be represented as two cylindrical hole and a cuboid
to approximate its elliptical crossection.

Relations: The set of relations includes: “TYPE’ denoting the
Polyhedral solid that approximate the object; ‘X’, Y’ and ‘Z°
denoting the position of the object. ‘LINK’ indicating the coordinate
transformation between the local coordinate systems of two cbjects.
Similarly we have ‘LENGTH,” ‘NAME,” ‘RADIUS,” ‘OFFSET’ and
‘ANGLES’.

Modeling the Piston Rod. Let us present the model of the
piston rod for the model aircraft engine (see Fig. 12). First we
define the components parts of the object. The components parts
are: piston-rod’s shaft, pin-end, pin-end’s hole, shaft-end, and
shaft-end’s hole. Formally:

BAR (TYPE(ect), X(0.2), Y(0.2), Z(0.62))

SHAFT-END-CYL (TYPE(cyl), RADIUS(0.156), LENGTH(0.114))
SHAFT-END-HOLE (TYPE(cyl-hole), RADIUS(0.089),
LENGTH(0.114))

PIN-END-CYL (TYPE(cyl), RADIUS(0.134), LENGTH(0.16))
PIN-END-HOLE (TYPE(cyl-hole), RADIUS(0.081),
LENGTH(0.16))

Note that the foregoing objects define complex modules of order 2.
For example, ‘rect’ is a primitive module, “TYPE(rect)’ is complex
module of order 1, and BAR(...) is a complex module of order 2.

" The next step is to indicate the relationships between the various
parts. The simplest links in the model of the piston rod are the
relationships of the holes to their corresponding cylinders since they
are aligned and concentric:

LINK (SHAFT-END-HOLE, SHAFT-END-CYL)

LINK (PIN-END-HOLE, PIN-END-CYL)

Then we place the hollow cylinders at the ends of the bar:

LINK (SHAFT-END-CYL, BAR)

LINK (PIN-END-CYL, BAR)

Finally, we need also to denote the position and orientation of either
one of the hollow cylinders relative to the BAR:

OFFSET (SHAFT-END-CYL, BAR, X(0), Y (0), Z(0.466))
ANGLES (SHAFT-END-CYL, BAR, X (0), Y (p/2), Z(0))
OFFSET (PIN-END-CYL, BAR, X (0), Y (0), Z(—0.444))
ANGLES (PIN-END-CYL, BAR, X (0), Y (p/2), Z(0))

B. Specifications (L)

It is imperative to describe the specifications in a precise, formal
and unambiguous manner. For only then can one attempt to test
a design against the requirements and determine unambiguously
whether or not the former satisfies the latter. Ideally, the specifications
are described in the designer’s natural language. In [19] both propo-
sitional and first-order logic specification language were developed.
In this paper, we refer to the specifications indirectly. Therefore, it
was deemed not to present the formal model.

C. Transformation Operators (A, S & E)

You are given a set of requirements and a blank piece of paper.
How do you proceed? We view the design process as a goal-
directed derivation process which starts with an initial set of design
specifications and terminates with one or more artifacts. By adaptively
modifying pairs of design and specifications, from one cycle (step) to
the next, we arrive at a design solution. In particular, the following
basic terminology is used: A synthesis state is described by:

1) Design part: the tentative design solution (artifact) synthesized

up to this point of the execution. :

2) Specification part: the set of requirements that remains to be

satisfied. '

Initially the design part is empty and the specification part includes
the initial requirements. Let us denote the synthesis state by a pair
(m, 6}, where m is the design part and 6 is the specification part. A
design part may be said to represent first order constraints; features
that serve as (or as a part of) the blueprint for the artifact’s imple-
mentation. The specification part may be said to form higher order
constraints; properties, assertions or predicates that are satisfied by
the lower order constraints (e.g., functional, performance, reliability,
manufacturability and aesthetic constraints). Although the distinction
between “design” and “specifications” is quite frequently blurred and
meaningless, we will make the distinction because of methodological
arguments and mathematical convenience.

A synthesis cycle (step) corresponds to a transition (transformation)
from one synthesis state to another synthesis state and is featured by:

Evaluation: testing and verifying the current design part against
the available specifications. Testing the tentative design part against
the specification part involves a wide range of reasoning types, such
as classical and approximate logical systems (theorem provers, quali-
tative reasoning); experiments (simulations); knowledge accumulated
from previous experience; and common sense reasoning (heuristics
and ‘rules of thumb’).

Analysis & Synthesis: Modifying the synthesis state, resulting in a
new pair of (design, specifications). The modification can be directed
in two manners, synthesizing a new design part or identifying all
possible factors that may be relevant to the current synthesis stage
and the eventual reduction (analysis) of these factors to a new
specification part. In [19], the analysis and synthesis transformations
were modeled through finite state automata.

A synthesis state is terminal in either of two cases: 1) the
specification part is safisfiable by the design part (in which case
we have a solution), or 2) neither the design nor the specification
parts can be further modified. The former is termed a successful pair
whereas the latter is termed a failed pair.

An execution of a design process is simply a finite sequence of
synthesis states, resulting in a terminal state.

The rest of the paper addresses and examines the computational
complexity attached to a special case of the synthesis activity termed
the Basic Synthesis Problem (BSP). Rigorous description of this
problem will serve to illuminate the intractability properties of the
design process.
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IV. THE BASIC SYNTHESIS PROBLEM

A. Problem Formulation

The term ‘basic synthesis’ is defined as the complete specifications
of primitive components and their relations so as to meet a set of
specifications of satisfactory performance, which correctly implies
the domain-independent nature of the design as a generic activity.
Traditional engineering design methods prefer to use specifications
of satisfactory performance over using optimal performance, since
the designer is constantly faced with the problem of bounded ratio-
nality {22]. The model of bounded rationality takes as self-evident
limitations on the cognitive and information processing capability of
the designer’s decision making.

In practice, designers often set some criteria of satisfactoriness and
if the design meets the criteria, the design problem is considered
to have been ‘solved’. These criteria are mostly conflicting and
heterogeneous in the same sense that the quality of the compared
alternatives cannot be adequately expressed by a single integral
criterion formed as a composition of the original (partial) criteria.
Therefore, single-criterion optimization is often insufficient for choos-
ing the best designs. The multiple criteria can include manufacturing
and marketing considerations, in addition to traditional measures.

Example 2: Consider a multistorey reinforced concrete building
design. A complete evaluation of a design solution (limited to the
main beams) mainly involves the evaluation of the following four
types of criteria [15].

* Slenderness of beams. This checks the adherence of the design
to zoning regulations regarding span/depth restrictions of the
beams.

* Interference. This is based on the clearance between floor and
roof, which in turn, is decided by the deepest beam in the plan.

* Beam-column compatibility. At every junction of the beam and
column, a check is made to see if the smaller of the two columns
dimensions is the same as the breadth of the beam that frames
into that side. The evaluation may be based on the percentage
of all such instances that violate this requirement.
Adjacency—The desirability of two adjacent beams having the
same depth is sought for. The evaluation may be based on the
percentage of all such instances that violate this requirement.

.

The multiple criteria optimization is modeled through the eval-
uation operator. The evaluation operator measures the degree of
efficiency of an artifact, defined as the degree of closeness (the less
the better) to the actual specifications desired. Formally,

Definition 3 (Evaluation Operator): A mapping Es : M* —
R"™; 6 is an ordered set of specifications alternatives and Eg(m) =
(E¢,(m), Eg,(m),..., Ey, (m)), such that Ep,(m) measures the
degree of closeness of to the specification 6;. Ey induces a
preference structure on the artifact space, i.e.,

1) Eg,(m1) < Ey,(m2) & The designer strictly prefers module

my over module mg, relative to the specification attribute ;.

2) Ey,(m1) = Eg,(m2) & The designer is indifferent regarding

choice of mi over module mg, relative to the specification
attribute 6;.

The designer often defines, prior to solving the BSP, a threshold
vector K = (k1, ko, ..., k. ). K represents (pointwise) the maximum
degree of closeness (to #), which is still accounted efficient. We term
K as the designer’s aspiration level. Having defined the aspiration
level, the BSP is formulated as the decision problem concerning the
existence of a module evaluated below the aspiration level. Formally,

Definition 4 (Basic Synthesis Problem): Given a set of modules
M, a set of relations C and a positive vector K € R", are there

subsets Mo C M,Co C C and module m € {My, Co) such that
Eo(m) < K?

Special instances of the BSP include PCB’s design (“packing”,
“placement” and “routing”); 0 logic gates circuit satisfiability; and
certain graph enumeration and isomorphism problems in the realm of
mechanisms design. Toward examining thoroughly the computational
aspects of the BSP, let us first identify one problem instance of the
BSP.

Example 3 (Minimizing Microinstruction Size) [8, 12, 13]:
Microprogrammed Control: Microprogramming is a technique for
implementing the control function of a processor in a systematic
and flexible manner. Every instruction in a CPU is implemented
by a sequence of one or more sets of concurrent microinstraction.
For example, a microinstruction represented by the symbol Reg; «—
Reg., when executed by the control unit, causes the content of
the specified register Regz to be gated to the register Regi. Each
microoperation is associated with a specific set of control lines which,
when activated cause that microoepration to take place. Since the
number of instructions and control lines is often in the hundreds, a
hardwired control unit that select and sequences the control signals
can be exceedingly complicated.
Microprogramming may be considered as an alternative to hard-
wired control circuits. The control signals to be activated at any time
are specified by a word called a microinstruction which is fetched
from a control memory COM in much the same way an instruction
is fetched from the main memory. A set of related microinstructions
is called a microprogram.
Parallelism in Microinstructions: Microoperation length is deter-
mined, at large, by the maximum number of simultaneous micro-
operations that must be specified. Therefore, microinstructions are
often designed to take advantage of the fact that at the micropro-
gramming level, many microoperations can be performed in parallel.
For example, if microoperation m writes into a register/store which
is read by mo than m; and my cannot be executed in parallel.
Therefore, it is useful to divide the microoperation specification part
of the microinstruction into % disjoint parts called control fields. Each
control field encodes or represents a set of microoperations, any
one of each can be executed concurrently with the microinstructions
specified by the remaining control fields.
Minimally Encoded Microinstruction Organization (MEMO): Let
us examine the problem of encoding the control fields such that
the total number of bits in the control fields is a minimum [8].
Let Iy, I2,...,I be a set of microinstructions for the computer
that is being designed. Each microinstruction specifies a subset
of the available microinstructions S = {S1,952,...,5.} which
must be activated. An encoded control field can activate only one
microoperation at a time. Two microoperations S; and S> can be
included in the same control field only if they cannot be executed in
parallel from the same microinstruction. Call S; and S» a compatible
pair. A compatible class H; is a set of microoperations that are
pairwise compatible. Each H; can, then, be encoded in a single field
of the microinstructions using B; = [log, |H;| + 1] bits. The total
length of the microinstruction would be B = ZZ;I B; bits.
The problem is, to determine a set Hmin of compatible sets such
that the corresponding length B, is the minimum. This problem is
formulated in a BSP form as follows:
¢ The primitive modules (M) are identified with the set of
microinstructions S;

» There are n types of relations (C), such that ¢; =
{{Siy> Sigyer-58i;): {8y, 8ip,.--,8:;} is a compatible
class that includes j microoperations}.
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A solution for the BSP is specified in terms of a set of relations
{ci}.

+ The evaluation operator (E) is the total length (in bits) of the

microinstruction that corresponds to the BSP solution.

Special Case: Let S = {s1,52,...,53} be the set of primitive
modules. Consider the following pairs of microoperations that can be
executed concurrently without any conflict in their resource usage:
(s1,82), (51,83), (52,84), (82,85), (52,86), (s2,87), (s2,58),
<S37 35>7 <S37 Se), <347 51>7 <S4> $6>7 <55, S7>, <367 S7>, (5’7,5’1),
<$7, 52>.

BSP: Is there a module (a collection of compatible sets), such that
the total length of the microinstruction would be <6 bits?

Two design alternatives are considered. The microinstruction that
corresponds to the first alternative yields a total length of 7 bits

er ={(s1)};

Alternative 2 yields a satisfying solution (with total microinstruction
length of 6 bits)

= {{s2,83)}; s

c2 = {{s4,57),(52,83)}; ca = {(s5,56,58)}.

= {(s4,57,58),(51,55,56) }.

B. The Intractability of the BSP

The technical result in this section concerns the computational
complexity of the BSP. Over the past decade, complexity theory
has emerged from a branch of computer science almost unknown
to the operations research community into a topic of widespread
interest and research. Computational complexity theory seeks to
classify problems in terms of the mathematical order of the com-
putational resources—such as computation time, space and hardware
size—required to solve problems via digital algorithms. The notion of
“easy to verify” but not necessarily “easy to solve” decision problems
is at the heart of the Class NP. Specifically, NP includes all those
decision problems that could be polynomial-time solved if the right
(polynomial-length) “clue” or “guess” were appended to the problem
input string. An important subclass of NP problems are referred to as
NP-complete or Non-deterministic Polynomial time Complete prob-
lems [10]. The CPU time required to solve an NP-complete problems,
based on known algorithms, grows exponentially with the “size” of
the problem. There exists no polynomial time transformations for NP-
complete problems, nor are there any polynomial time algorithms
capable of solving any NP problems. The potential to solve NP
and NP-complete problems depends on the availability of certain
heuristics.

In the following, the time complexity of solving the BSP is
expressed as a function of the size of the problem. By the size
of the BSP we mean the total number of modules and relations
(IM] 4+ |C]). We assume that the input length for an instance of a
BSP is efficiently encoded (i.e., the problem size grows polynomially
with the number of modules and relations). We also assume that
each formula ¢; ({mi1,mi2,...,Min)x) and Ey can be verified and
computed respectively in polynomial time. It is shown that:

Theorem 1: The BSP is NP-complete.

Proof: Let us prove the first part of the theorem. It is easy to see
that the BSP € NP, since a nondeterministic algorithm need only
guess subsets Mo C M, Co C C and a module m € (Mo, Co) and
check in polynomial time that the threshold condition Es(m) < K
is satisfied.

Next, we transform the satisfiability problem (see the appendix) to
the BSP. Let X = {z1,22,...,2n} be a set of Boolean variables
and £ = {e; Aea A-+-Aer} be a conjunction of clauses (a clause is
defined as the disjunction of literals over X), which form an arbitrary
instance of the satisfiability problem. We construct sets M, C, an
Evaluation mapping Fy, and a positive integer X such that there are

CNF: X={x;,X20..xn}; E=fe1n e; A... Ae}

Transform the CNF to
BSP instance

M={x1, X3 0000

C={TRUE, FALSE};

0 if Eis satisfiable by m
Eyg(m) =

1 otherwise

dm: Eg(m)s 0 ?

Yes, E is satisfiable No, E is not satisfiable

RS, PUeintor) 5 ZE5ppi00y
Fig. 14. A Polynomial transformation from SAT to BSP.

Fig. 14. A Polynomial transformation from SAT to BSP.

subsets Mo C M, Co C C and a module m € (Mo, Co) satisfying
Ey(m) < K. The construction goes as follows (depicted in Fig. 14).
1) Let M = {&1,22,...,2n}; 2) Let C = {TRUE, FALSE},
such that TRUE = {{(zi;,is,...,%i,,)} means z;;, = “true”
(hence ~x;; = “false”) for every 1 < j < m (“FALSE” is defined

similarly); 3) a design solution is defined as m = {TRUE =
{(mix:mizv e s Zip, )}, FALSE = {(le,acj2 yo ,xijm)}} such
that {;v,-l,:c,-Z,...,z,‘m} U {zj,zj,.- s LiN—m = X and
{Ziy, @iy, oo, @i YO @50, g, oo, Zi5 . } = ¢ 4) The evaluation
mapping is defined as
if F is satisfiable by m
Eo(m) = {1 otherwise.

Now, one easily verifies that Jm Ey(m) < 0 & F is

satisfiable. O

Theorem 1 above implies that, in the worst case, the time required
to produce a solution is O(k™) where k is a constant and n, a
parameter characterizing the ‘size’ of the problem. Therefore the use
of heuristics (e.g., branch-and-bound techniques or backtrack search)
to search for an optimal solution is inevitable when the problem is
large.

The intractability of the BSP infers that the number of potential
designs is combinatorial-that is, designs are collections of prim-
itive elements, and many different elements can be combined in
exponentially different ways:

Proposition 1 (Upper Bound): Let & denotes the set of possible
solutions (a subset of (3, C)), ¢; C (M*)"’ |M| = N and |C| = p.
Then [3] < [T5- 20,

Proof: Every relatlon c; consists of assignments, each associated
with the Cartesian product of n copies of the set M™. Since
(M *)" | = N™¢, the number of possible assignments is given by
2™ As a deSIgn solution is the set of p relations, the required
bound is concluded. O
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V. THE CONSTRAINED BASIC SYNTHESIS PROBLEM

A. Problem Formulation

The primitive modules and relations determine the space of pos-
sible solutions to the BSP. A designer can only generate structural
descriptions that can be formed from these elements. The constraints
imposed by the choice of primitive modules and relations are the
cause of a fundamental trade-off between the expressiveness of the
design representation scheme and the complexity of the BSP. As
design representation schemes become more expressive, the space of
possible solutions increases.

Here, we consider constraints with respect to three cases: 1) the
possible number of assignments that each module can share, grows
polynomially (of order ) with respect to the number of primitive
modules N; 2) the cardinality of the relation set C' is bounded by
some constant p; and 3) the cardinality of each relation is bounded by
some constant v. These constraints constitute the constrained basic
synthesis problem (CBSP):

Definition 5 (Constrained Basic Synthesis Problem): CBSP is ex-
pressed similarly to the BSP by further considering the foregoing
constraints.

Formulating the CBSP in this form enables obtaining refined upper
bounds of || (Theorems 2 and 5), and precise conditions where the
CBSP can be solved in polynomial time (Proposition 2).

B. Universal Upper Bound on ||

In this section, we obtain a universal upper bound of || using
an elementary information-theoretic approach. This upper bound is
particularly useful when the a priori algorithm of solving the CBSP
is unknown.

Let us first introduce the important quantity of the entropy of a
random variable:

Definition 6: The entropy H (X) of a discrete random variable X
drawn according to the probability mass function p(z),2z € £, is
defined by H(X) = = Y .o p(x)log, p(x). We also write H(P)
for the above quantity. The log is to the base of 2 and entropy is
expressed in bits.

Theorem 2 (Universal Upper Bound): For v < 0.5N”*! and suf-
pNTHL .

ficiently large N, |S] < 70 HotT) - Ho(P) denotes the binary
entropy function Ho(P) = —plog, p — (1 — p)log,(1 - p).

Proof: The number of possible assignments constituting any rela-
tion ¢ € C is bounded by N7*!. A design solution is defined by a
set of p relations. Consider each relation ¢; contains z; assignments
(2 < v) out of the N7*! possible ones. Therefore the number of
possible designs having this characteristic is given by [T, (" Z:rl )-
Hence,

v v P +1
31< 3 EH(N; )
z1=1 zp=14i=1 ?
e ——r!
p

It is known that for large values of N, the binomial coefficients
1 1
satisfy (N:+ ) < (NT ) (recall that z; < »). It can also be

shown [6] that the binomial coefficients satisfy (]Z y < 2V HolF),

+1 —v . .
Therefore, we obtain (V' 1“) < V7" HolFT) | Plugging into the

foregoing upper bound on |3| and rearranging, we obtain the required
inequality. .

Theorem 2 shows that the cardinality of & grows exponentially
with N7 and with the binary entropy Ho (). The upper bound
can be controlled by a suitable selection of N and v. The binary
entropy is a concave function of the distribution, equals 0 when

Choosing

A ced.

Relation i

A Design
Solution

Fig. 15. The probabilistic decision making process.

p =0 or 1, and the maximum is obtained when p = 0.5. Therefore,
the cardinality of & can considerably be decreased either by solving
problems where v is small with respect to N"t1(ie., p = 527 —
0), or where v approaches N”*' (ie, p = %7 — 1). Indeed
we show that:

Proposition 2: For v < N7™! and sufficiently large N, |S] is
bounded by: o exp(o(N))N*"1# a is a constant and o( N') means
oAN) g

N Nooo |

Proof: The proof is similar to that of Theorem 1, except for
using the following useful approximation when needed: N w1) =

(exp(v) /V2rv*T05)) exp(o(N))NOHD¥ . Notice that the first
term is a constant. a

VI. REFINED UPPER BOUND ON ||

A. Probabilistic Design Selection

In this section, we tighten the universal upper bound in the last
section by taking into account that the designer uses probabilistic
heuristic strategy to search for solutions for the CBSP.

The nature of the information involved in the search for a design
solution may be deterministic, by showing which designs in < are
categorically inferior, or probabilistic, by identifying those designs
having the greatest probability of solving the problem. The probabilis-
tic decision making process is supported by many protocol studies
on design [e.g., 24]. In a probabilistic framework, the designer finds
himself at a certain decision stage, labeled Node M ;; in Fig. 15. Node
M is associated with a set of assignments (constituting relation ¢;),
A; through A, each with a probability p; of being included in a
successful design solution. The choices are made out of the N7+!+1
possibilities (including the void assignment). We assume that the
process of decision making is sequential, and that the decisions are
mutually independent. Thus, choosing vp assignments results in a
design solution. The designer’s problem is that he may not know
which assignments will ultimately lead to a satisfying design solution.
In other words, he has little or no information on the value of the p;’s.

In the sequel, we establish the appealing proposition that not all
possible solutions in S have the same probability of solving the CBSP
and that the probability of identifying a solution for the CBSP is
inversely proportional to the number of assignments specified.

B. The Asymptotic Equipartition Property (AEP)

Let us first recall some basic results of information theory de-
riving from the Asymptotic Equipartition Property (AEP) which is
formalized as follows:

Theorem 3: If Xi,Xo,... are iid.~ p(z),z
~Llogp(X1,X2,...,Xn) — H(X) in probability.

€ Q, then
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31 13 Possible solufions

Non-typical set

Typical set of desions
L 4iH e foms
A 1 3METD gesigns

Fig. 16. Typical set of design solutions.

Proof: By the weak law of large numbers. ]
Definition 7: The typical set A with respect to p(z) is the set

of sequences (z1,x2,...,zn) € Q" with the following property:
9= n(H)(X)+e) < p(

T1sL2yenny Ll?n) S 2—n(H(X)~s)‘

As a consequence of the AEP, it can be shown that the set Ag") has
the following properties:
Theorem 4:
D If (21,22,...,20) € A, then H(X) — & < —Llogp
(X1, Xz,...,Xn) < HX)+e.
2) Pr{A™l > 1 ¢ forn sufficiently large.
3) A < 2rHEOF) | here |A] denotes the number of
elements in the set A.
4 AN > (1= e)2rHOO+S) for sufficiently large.
Proof: The proof can be found in [6, pp. 52-53], and is omitted
here. 0
Thus the typical set has probability nearly 1, all elements of the
typical set are nearly equiprobable, and the number of elements in the
typical set is nearly 2"7*) Moreover, any property that is proved
for the typical sequences will then be true with high probability and
will determine the average behavior of a large sample.

C. Consequences of the AEP on the CBSP

Let us now apply the AEP to the CBSP considering a probabilistic
decision making process as explicated above. We let n = vp and
AY?) denotes the typical set. The typical set is interpreted as the
smallest set of design solutions having the highest probability of
including a solution for the CBSP (see Fig. 16). Assuming that
the selections of assignments are independently drawn from the
probability mass function p(z) and that vp is sufficiently large, we
obtain |AY?)| & 2veHX),

In case the selections are uniformly distributed over the set of
possible assignments, (ie., p(z) = 1/(N"*! 4 1)), we obtain
|ALP)| = 2veles(N D) o NOHDYP Thys, we see that while
the universal upper bound on the size of & grows exponentially with
respect to N7*1 (Theorem 2), the typical set of designs is a fairly
small set that has the highest probability of including a solution for
the CBSP. It is interesting to note that the cardinality of the typical
set is similar to the upper bound derived in Proposition 2 (where
v & N7,

VII. SUMMARY

This work develops a model for the design process. Such a model
enables formal understanding of design processes, and as such enables
modification of the design to various needs. For example, modifying
the input specifications to consider robotics assembly can result in

a different design solution (see [19]). The paper develops a model
of the process based on triple interleaved activities of analysis,
synthesis and evaluation, which explode the specification world, and
accordingly the design process, until a solution is achieved. The
basic synthesis problem (BSP) is defined and shown to be generally
intractable. Expressions for the cardinality of the set of possible
solutions are obtained, under various conditions. Qur results are
essential for developing heuristic strategies to search for optimal and
suboptimal design solutions. Our main conclusion is that although
expressiveness of the BSP is necessary to allow for the generation
of a wide variety of designs, simply increasing the expressiveness
of a design problem swamps the designer with alternatives. So, any
increase in expressiveness must be accompanied by an increase in
the designer’s ability to control the complexity of the design space.

APPENDIX
(THE SATISFIABILITY PROBLEM)
The satisfiability (SAT in short) is expressed in terms of the
following:
« Aset X = (z1,2a,...,2N) of Boolean variables.
 Literal—A variable z or its negation ~zx.
¢ Clause over X—Defined as the disjunction of literals over X,

denoted by e.
* Expression—Defined as a conjunction of clauses, denoted by a
collection of clauses, E = (e1,€e2,...,em).

e Satisfying truth assignment for E—A collection E of clauses
over X is satisfiable iff there exists true assignment for X that
simultaneously satisfies all the clauses in F.

Now, SAT can be formulated as: Given a set X of variables and a
collection E of clauses over X . Is there a satisfying truth assignment
for E.

REFERENCES

[11 A. Apple, “Modeling in three dimensions,” IBM Systems Journal, vol.
7, nos. 3-4, pp. 310-321, 1968. )

[21 M. Asimow, Introduction to Design. Englewood Cliffs, NJ: Prentice-
Hall, 1962.

[3]1 B. Bohem, Software Engineering Economics.
Prentice-Hall, 1981.

[4] D. Braha and O. Maimon, “A mathematical theory of design: Modeling
the design process (Part II),” Int. J. General Syst., 1995.

[5] I. C. Braid, “The synthesis of solids bounded by many faces,” Comm.
ACM, vol. 18, no. 4, 1975.

[6] T.M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[7] R. D. Coyne, M. A. Rosenman, A. D. Radford, M. Balachandran and J.
S. Gero, Knowledge-Based Design Systems. Reading, MA: Addison-
Wesley, 1990.

[8] S.R.Das, D. K. Banerji and A. K. Chattopadhyay, “On control memory
minimization in microprogrammed digital computers,” IEEE Trans.
Comput., vol. C-22, no. 9, pp. 845-848, 1973.

[91 C. L. Dym and R. E. Levitt, Knowledge-Based Systems in Engineering

Design. New York: McGraw-Hill, 1993.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness. San Francisco, CA: W. H. Freeman,

1979.

J. H. Garret and M. L. Mehar, “Knowledge-based systems in design and

planning,” J. Comp. Civ. Engrg., vol. 5, pp. 1-3, 1991.

A. Grasselli and U. Montanari, “On the minimization of read-only

memories in microprogramed digital computers,” IEEE Trans. Comput.,

vol. C-19, no. 11, pp. 1111-1114, 1970.

J. P. Hayes, Computer Architecture and Organization. New York:

McGraw-Hill, 1988.

J. C. Jones, Design Methods: Seeds of Human Futures, 2d ed. New

York: Wiley, 1980.

C. S. Krishnamoorthy, H. Shivakumar, S. Rajeev and S. Suresh, “A

knowledge-based systems with generic tools for structural engineering,”

Structural Eng. Rev., vol. 5, no. 1, pp. 334-358, 1993,

Englewood Cliffs, NIJ:

[10]

(113
[12]

{13]
[14]

[15]



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 1, JANUARY 1996 151

[16] M. A. Lavin and L. I. Lieberman, “A system of modeling three
dimensional objects,” IBM Research Report RC-5765, 1975.

O. Maimon and D. Braha, “A proof of the complexity of design,”
Kybernetes, vol. 21, pp. 59-63, 1992.

——, “A mathematical theory of design: Representation of design
knowledge (Part I),” Int. J. General Syst., 1995.

[19] .——, “An exploration of the design process,” Tech. Rep. 94-3, Dept.
Manuf, Eng., Boston University, Boston, MA, 1994.

W. H. Middendorf, Design of Devices and Systems. New York: Marcel
Dekker, 1986.

C. V. Ramamoorthy ef al., “Issues in the development of large, dis-
tributed and reliable software,” in Advances in Computers, vol. 26, pp.
393443, M. C. Yovits, ed. New York: Academic Press, 1987.

H. A. Simon, The Science of the Artificial. Cambridge, MA: MIT Press,
1981.

D. Sriram and K. Cheong, “Engineering design cycle: A case study
and implications for CAE,” in Knowledge Aided Design. New York:
Academic, 1990.

D. Ullman, T. G. Dietterich and L. A. Stauffer, “A model of the
mechanical design process based on empirical data,” AI EDAM, vol.
2, pp. 33-52, 1988.

R. K. Vemuri, Soo-Ik-Oh and R. A. Miller, “Topology-based geometry
representation to support geometric reasoning,” IEEE Trans. Syst., Man,
Cybern., vol. 19, no. 2, pp. 175-187, 1989.

{17]

[18]

[20]

[21]

[22]

{23]
[24]

[25]

Abstractions of Finite-State Machines and Optimality
with Respect to Immediately-Detectable Next-State Faults

Kostas N. Oikonomou

Abstract— Abstraction is the process of lumping together some of
the inputs, states, and outputs of a finite-state system (machine) A to
transform it into a smaller, generally nondeterministic system A/ 4. The-
oretically, abstraction can be viewed as a method for approximate system
simplification, and practically it finds application to system monitoring.
Large and complex systems are usually observable through restricted
interfaces, which allow an observer only a lumped (abstracted) view of
the system, and render some erroneous behaviors undetectable. In spite
of the nondeterminism introduced by the abstraction, there is still a class
of faults in the system (changes in the next-state or output maps) which
are immediately-detectable upon occurrence. Here we study the problem
of finding an abstraction for an fsm which groups the inputs, states,
and outputs into a specified number of classes, while maximizing the
number of immediately-detectable (i.d.) next-state faults of muitiplicity 1.
Assuming that a partition of the machine’s outputs is given, we show that
the optimal choice of either the state or the input partition is an NP-hard
or NP-complete problem. However, we give a polynomial-time algorithm
that finds an approximately optimal partition of the machine’s inputs
for any given partition of the states. We also provide a bound on the
optimum, computable in polynomial time. Numerical experiments with
the algorithm on randomly-generated machines with two types of state
partitions, suggest that (a) the optimal number of i.d. next-state fauits
increases linearly with the number of blocks of the input partition, and
(b) that more faults are i.d. in machines with “sparse” structure and with
less uniform state partitions.

I. INTRODUCTION

Finite-state machines are useful as models of many real systems.
An abstraction of a finite-state machine (fsm) M consists in lumping
(aggregating) some of its states, inputs, and outputs into classes,
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which then become the states, inputs, and outputs of a smaller
fsm M4. If M is deterministic, the abstracted machine M4 will,
in general, be nondeterministic. If the lumping is carried out in
accordance with appropriate criteria, abstraction can be viewed as a
general method for approximate simplification of a large and complex
finite-state system (modeled by the fsm).

An alternative viewpoint is that the concept of an abstraction
represents the situation in which an observer is monitoring a complex
system: generally the observations possible on the system are limited
(not all details are visible), and the observer’s knowledge of the
system’s correct behavior is incomplete. We will see that the abstrac-
tion can represent the interface limitations, as well as the observer’s
simplified model of the system.

The first viewpoint, abstraction as approximate-simplification, is of
theoretical interest, while the second is more practical, being appli-
cable, for example, to the monitoring of systems for the purposes of -
fault detection. The concept of abstraction was introduced originally
in this context in [15]'. Whichever of these two viewpoints is adopted,
the purpose of this paper is to present some criteria for selecting
an optimal abstraction of a given fsm, to show that the choice of
an optimal abstraction is computationally hard, and to present an
algorithm which computes an approximately optimal abstraction in
reasonable time.

A. Abstractions, Observers, and Optimality

Given a system of interest, let the fsm M represent the system in
full detail. (Of course, every model of a real system is itself at some
level of abstraction.) The abstracted fsm M4 representing the system
at a higher level of abstraction is constructed by lumping M’s states,
inputs, and outputs into classes. If @, X,Y are the sets of states,
inputs, and outputs of M, these classes are specified by partitions
Io,x, and Iy. We call the triple (Ilg, I1x,IIy) the abstraction
A. The machine M4 is defined as follows. Let Q; and X be blocks
of HQ and Ix respectively. To see if Ma can move from state
Q: to state Qx with input X, check if M has a transition from
some state in Q; to some state in Qr with some input in X;. Ma’s
output map is defined similarly. Clearly, the abstraction generally
results in a nondeterministic machine. Otherwise, the fsm M and
absiraction A are completely arbitrary. If M = (Q, X,Y, 6, A), with
5 and X the next-state and output maps, we will denote Ma by
(HQ’ HX? HY7 6A’ AA)

Example: Fig. 1 shows a 4-state machine, behaving like an
up/down mod 3 counter. An abstraction A is shown that lumps
the states into two classes and the outputs into three classes, while
leaving the inputs as they are. The machine M4 and its next-state
and output maps 64 and A4 are also shown.

Now imagine a human or machine entity observing the system
M naturally, we will refer to it as the “observer”. M is subject to
malfunction, and the observer’s task is to detect erroneous behaviors
in M. However, the observer only sees the states, inputs, and outputs
of M4, and we will assume that M4 is all that it knows about the
specification of the system. Thus the observer’s knowledge of the
system’s correct operation is commensurate with its observational
abilities. The situation is shown in Fig. 2. Note that the observer’s
limitations result either from the fact that the interface to M is
restricted, or because of a desire to have a simplified model of M. We
will further assume that the observer observes only single transitions

! For the monitoring approach to fault detection in computing systems see
[1], [2], [5], [12], [20].
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