
When Systems Engineering Fails --- Toward Complex
Systems Engineering

Yaneer Bar-Yam
New England Complex Systems Institute

Cambridge, MA, USA
yaneer@necsi.org

Abstract - We review the lessons learned from problems
with systems engineering over the past couple of decades
and suggest that there are two effective strategies for
overcoming them: (1) restricting the conventional systems
engineering process to not-too-complex projects, and (2)
adopting an evolutionary paradigm for complex systems
engineering that involves rapid parallel exploration and
a context designed to promote change through competi-
tion between design/implementation groups with field
testing of multiple variants. The second approach is an
extension of many of the increasingly popular variants of
systems engineering today.

Keywords: complex systems, complexity in engineering,
systems engineering

1 Large Engineering Projects
The traditional approach to large engineering projects fol-
lows the paradigm established by the Manhattan project
and the Space program. There are several assumptions in-
herent to this paradigm. First, that substantially new tech-
nology will be used. Second, the new technology to be
used is based upon a clear understanding of the basic prin-
ciples or equations that govern the system (i.e. the rela-
tionship between energy and mass, E=mc2, for the Man-
hattan project, or Newton's laws of mechanics and gravita-
tion F=-GMm/r2 for the space program). Third, that the
goal of the project and its more specific objectives and
specifications are clearly understood. Fourth, that based
upon these specifications, a design will be created essen-
tially from scratch and this design will be implemented
and, consequently the mission will be accomplished.

Large engineering projects today generally continue
to follow this paradigm. Projects are driven by a need to
replace old "obsolete" systems with new systems, and par-
ticularly to use new technology. The time line of the pro-
ject involves a sequence of stages: a planning stage at the
beginning giving way to a specification stage, a design
stage, and an implementation stage. The various stages of
the process all assume that managers know what needs to
be done and that this information can be included in a spe-
cification. Managers are deemed successful or unsuccessful
depending on whether this specification is achieved. On
the technical side, modern large engineering projects gen-
erally involve the integration of systems to create larger
systems, their goals include adding multiple functions that
have not been possible before, and they are expected to

satisfy additional constraints, especially constraints of
reliability, safety and security.

The images of success in the Manhattan and Space
Projects remain with us. What really happens with most
large engineering projects is much less satisfactory. Many
projects end up as failed and abandoned. This is true des-
pite the tremendous investments that are made. A collec-
tion of such project failures is shown in Table 1 with costs
ranging from around $50 million to $5 billion, and the
final one, an automation project for dispatching of London
Ambulances may have cost 20 lives before it was stopped
after 48 hours. Each of these projects represents a
substantial investment and would not have been abandon-
ed without good reasons. The largest documented financial
cost for a single project, the Federal Aviation Administra-
tion (FAA) Advanced Automation System was the gov-
ernment effort to improve air traffic control in the United
States. Many of the major difficulties with air traffic de-
lays and other limitations are blamed on the antiquated /
obsolete air traffic control system. This system, originally
built in the 1950s, used remarkably obsolete technology,
including 1960s mainframe computers and equipment
based upon vacuum tubes [14], with functional limitations
that would compel any modern engineer into laughter.
Still, an effort that cost 3-6 billion dollars between 1982
and 1994 was abandoned without improving the system.

When a large project like the redesign of the air traf-
fic control system fails, participants and observers can oft-
en give reasons for the failure. Successful projects that are
superficially similar (but do not involve the same level of
complexity) seem to indicate that specific problems were
responsible. In this case there are several good reasons for
failure that appear unique. Specifically, the U.S. Gov-
ernment procurement process that involved both the FAA
and Congress has been blamed. Other problems were that
the specifications / requirements were not really known,
that it was designed around a "Big Bang" change that
would change the system from the old to the new over a
very short time, that there was an emphasis on changing
from manual to automated systems, and the �safety veto�
exercised by air traffic controllers who could refuse the
change because of their concerns about safety. The latter
indeed appears to be a daunting challenge since the safety
of airplanes full of people is a major concern that is not
present in many other large engineering projects. While
people have attributed the failure of the Advanced Auto-
mation System to these problems, the magnitude of fail-
ures of the large engineering projects in Table 1, and the

suggestion that each case involved its own unique reasons
does not seem to strike at the core of the causes of failure.

Table 1: List of Large Engineering Project Failures*

System Function �
Responsible

Organization

Years of
Work

(outcome)

Approx.
Cost

M=Million,
B=Billion

Vehicle Registration,
Drivers license � Calif.
DMV [3,10,23,24,39,40]

1987-1994
(scrapped)

$44M

Automated reservations,
ticketing, flight schedul-
ing, fuel delivery, kitchens
and general administration
� United Air Lines [27]

Late
1960s�Earl

y 1970s
(scrapped)

$50M

State wide Automated
Child Support System
(SACSS) � California
[12,37]

1991-1997
(scrapped)

$110M

Hotel reservations and
flights � Hilton, Marriott,
Budget, American Airlines
[26]

1988-1992
(scrapped)

$125M

Advanced Logistics
System � Air Force [38]

1968-1975
(scrapped)

$250M

Taurus Share trading
system � British Stock
Exchange [16]

1990-1993
(scrapped)

$100�$600M

IRS Tax Systems Modern-
ization projects [34]

1989-1997
(scrapped)

$4B

FAA Advanced
Automation System [35]

1982-1994
(scrapped)

$3�$6B

London Ambulance
Service Computer Aided
Dispatch System [30]

1991-1992
(scrapped)

$2.5M, 20
lives

*with thanks to J. Saltzer for providing some of the
references.

A study of government Information Technology pro-
jects in 1994 [13] pointed to waste throughout the Gov-
ernment, including a number of DoD projects. This led to
the Information Technology Management Reform Act
(ITMRA) part of the Clinger-Cohen Act in 1996. The ob-
jective of this Act was to bring strategies that were in use
in the private sector into government acquisition process-
es. It is useful, therefore, to ask whether indeed the private
sector had greater success in large engineering projects.

A general survey of large software engineering
projects was performed in 1995 by the Standish Group
International [32]. This study classified projects according
to whether they met stated goals of the project, the time
table, and cost estimates. They found that under 20% of
the projects were on-time, on-budget and on-function
(projects at large companies had a lower rate of under 10%
success), over 50% of the projects were "challenged" which
meant they were over budget typically by a factor of two,
they were over schedule by a factor of two, and did not
meet about two thirds of the original functional
specifications. The remaining 30% of the projects were
called "impaired" which meant that they were abandoned.
When considering the major investments these projects
represent of time and money, the numbers are staggering,
easily reaching $100 Billion each year in direct costs. The
high percentage of failures and the remarkable percentage
of challenged projects suggest that there is a systematic
reason for the difficulty involved in large engineering
projects beyond the specific reasons for failure that one
might identify in any one case.

Indeed despite ITMRA and related improvements,
successors of the Advanced Automation System that are
being worked on today, are finding the going slow and
progress limited [35]. From 1995 until today, major
achievements include replacing mainframe computers,
replacing communications switching system, and the en-
route controller radar stations. The replacement of the
Automated Radar Terminal System at Terminal Radar
Facilities responsible for air traffic control near airports
(the Standard Terminal Automation Replacement System
(STARS) program), faced many of the problems that
affected the Advanced Automation System: cost overruns,
delays, and safety vetoes of implementation, and was
implemented in 2002 by FAA emergency decree. Still, the
new equipment continues to be used in a manner that
follows original protocols used for the old equipment.

A fundamental reason for the difficulties with modern
large engineering projects is their inherent complexity.
Complexity is generally a characteristic of large
engineering projects today. Complexity implies that
different parts of the system are interdependent so that
changes in one part may have effects on other parts of the
system. Complexity may cause unanticipated effects that
lead to failures of the system. These �indirect� effects can
be discussed in terms of multiple feedback loops among
portions of the system [33], and in terms of emergent
collective behaviors of the system as a whole [6]. Such
behaviors are generally difficult to anticipate and
understand. Despite the superficial complexity of the
Manhattan and Space Projects, the tasks that they were
striving to achieve were relatively simple compared to the
problem of air traffic control. To understand complexity of
Air Traffic Control (ATC) it is necessary to consider the
problem of 3-dimensional trajectory separation --- ensuring
the paths of any two planes do not intersect at the same
time; the many airplanes taking off and landing in a short
period of time; and the remarkably low probability of
failure that safety constraints impose. Failure in any one
case may appear to have a specific cause, but the common

inability to implement high cost systems can be attributed
to their intrinsic complexity.

While the complexity of engineering projects has
been increasing, it is important to recognize that
complexity is not new. Indeed, engineers and managers are
generally aware of the complexity of these projects and
have developed systematic techniques to address them.
There are several strategies that are commonly used
including modularity, abstraction, hierarchy and layering.
These methods are useful, but at some degree of
interdependence they become ineffective. Modularity is a
well recognized way to separate a large system into parts
that can be individually designed and modified. However,
modularity incorrectly assumes that a complex system
behavior can be reduced to the sum of its parts. As
systems become more complex the design of interfaces
between parts occupies increasing attention and eventually
the process breaks down. Abstraction simplifies the
description or specification of the system. However
abstraction assumes that the details to be provided to one
part of the system (module) can be designed independently
of details in other parts. Modularity and abstraction are
generalized by various forms of hierarchical and layered
specification, whether through the structure of the system,
or through the attributes of parts of a system (e.g. in
object oriented programming). Again, these two
approaches either incorrectly portray performance or
behavioral relationships between the system parts or
assume details can be provided at a later stage. Similarly,
management has developed ways to coordinate teams of
people working on the same project through various
carefully specified coordination mechanisms.

The question is why aren't these enough? An overly
simple answer is that these mechanisms and techniques are
hard to get right. A more useful answer addresses the basic
issues in the behavior of complex systems, the effect of
interdependence of parts and functional complexity of the
parts and the whole system. Two theorems provide a basis
for understanding the underlying problems of engineering
complex systems. The first, the Law of Requisite Variety
[4], relates the complexity of the engineered system to the
complexity of its task. The second [6,8] states that for all
practical purposes adequate functional testing of complex
engineered systems is impossible.

Once we recognize these fundamental problems of de-
signing complex systems, how can we solve them? A par-
tial answer can be found in the process of incremental
change [32]. Incremental engineering is commonly used in
engineering design through the creation of improved ver-
sions of existing hardware or software. The key to this
suggestion is that when a new project is started, existing
systems or rapid prototypes will serve as the foundation
for iterative incremental changes. These incremental
changes enable experience based learning [25,36]. After
many incremental changes the system can achieve substan-
tial modification from its original form. This concept of
incremental design is one step towards a more complex
systems oriented approach. Recent extensions that adopt
some complex systems ideas include spiral development
and evolutionary acquisition [15] and adaptive program-
ming [2]. A complex systems perspective provides a larger

conceptual framework�evolution�from which to under-
stand how incremental change can enable rapid innovation
[7]. A discussion of various engineering approaches in
relation to a conventional understanding of evolution is
provided in Ref. [28]. This evolutionary process is most
commonly associated with the formation of complex
biological organisms.

2 Complex Systems & Innovation
The field of complex systems [6,8,9,11] provides

two answers to failures of large engineering projects [7].
The first is to change objectives. Recognizing that com-
plexity is a crucial property of engineering problems
should lead planners to limit as much as possible the
complexity of objectives. This is key to structuring of
successful projects. The second is to use an evolutionary
process. This becomes essential when simplification will
no longer work because the function required is intrinsi-
cally complex and thus the limits of rationality and mod-
eling imply high levels of uncertainty in function. In this
case many alternative solutions can be tried in a system-
atic manner allowing construction of highly complex enti-
ties. This paper focuses on the second, evolutionary engi-
neering process because most modern large engineering
projects are intrinsically complex and this complexity
cannot be eliminated and the desired function retained. A
few remarks are made about the possibility of complexity
limitation here for completeness.

2.1 Change objectives: Simplify when possible

The idea of limiting complexity seems obvious, but
the real effort involved is to recognize what gives rise to
complexity. The complexity of a task can be quantified as
the number of possible wrong ways to perform it for every
right way. The more likely a wrong choice, the more
complex the task. In order for a system to perform a task
it must be able to perform the right action. As a rule, this
also means that the number of possible actions that the
system can perform (and select between) must be at least
this number. This is the �Law of requisite variety� [4] that
relates the complexity of a task to the complexity of a
system that can perform the task effectively.

2.2 Evolve highly complex solutions

Simplifying the function of an engineered system is
not always possible because the necessary or desired core
function is itself highly complex. When the inherent
nature of a complex task is too large to deal with using
conventional large engineering processes, a better solution
is to use an evolutionary process [7] to create an
environment in which continuous innovation can occur.

Evolutionary processes, commonly understood to be
analogous to free market competition, are based on
incremental iterative change. However, there are basic
differences between evolution and the notion of
incremental engineering. Among these is that evolution
assumes that many different systems exist at the same
time, and that changes occur to these systems in parallel.

The parallel testing of many different changes that can be
combined later is distinctly different from conventional
incremental engineering. The use of parallel initial
exploration has been advocated in engineering [31].
However, this approach is also unlike evolution, because it
leads to the selection of a single option rather than
multiple parallel implementation. Multiple parallel
implementation is more similar to the parallel and largely
independent exploration of product improvements by
different companies in a market economy, especially when
there are many small companies. Another basic idea of
evolution is that much testing is done "in the field"; the
process of learning about effective solutions occurs
through direct feedback from the environment. There are
many more aspects of evolution that should be understood
in order to make effective use of this process in complex
large engineering projects. Even the conventional concepts
of evolution as they are currently taught in basic biology
courses are not sufficient to capture the richness of modern
ideas about evolution [6 (ch. 6),9,18-22,29].

Many of the more recent programming strategies, e.g.
spiral devleopment, extreme programming, and the open
source movement, embody features of evolutionary
processes. Still, a better understanding is necessary in
order to reaslize the promise of evolutionary methods. The
objective revolves around mimicry of the processes that
promote rapid innovation through competition. The
creation of an effective « artificial ecology » or « artifical
economy » requires design. In and of itself, a competitive
system is not self-sustaining as it tends to become stuck
through monopolization, or self-destructive behavior.

To introduce the concepts of evolution it is helpful to
start from the conventional perspective then augment it
with some of the modern modifications. Evolution is
about the change in a population of organisms over time.
This population changes not because the members of the
population change directly, but because of a process of
generational replacement by offspring that differ from their
parents. The qualities of offspring are different from their
parents, in part, because some parents have more offspring
than others. The process by which the number of offspring
are determined, termed selection, is considered a measure
of organism effectiveness / fitness. Offspring tend to
inherit traits of parents. Traits are modified by sexual
reproduction and mutation that introduce novelty /
variation. This novelty allows progressive changes over
many generations. Thus, in the conventional perspective
evolution is a process of replication with variation
followed by selection based upon competition. In contrast
with an engineering view where the process of innovation
occurs through concept, design, specification,
implementation and large scale manufacture, the
evolutionary perspective would suggest that we consider
the population of functioning products that are in use at a
particular time as the changing population that will be
replaced by new products over time. The change in this
population occurs through the selection of which products
increase their proportion in the population. This process of
evolution involves the decisions of people as well as the
changes that occur in the equipment itself.

It may be helpful to point out that this approach (the
treatment of the population of engineered products as
evolving) is quite different than the approach previously
used to introduce evolution in an engineering context
through genetic algorithms or evolutionary programming
(GA/EA) [17,19]. The GA/EA approach has considered
automating the process of design by transferring the entire
problem into a computer. According to this strategy, we
develop a representation of possible systems, specify the
utility function, implement selection and replication and
subsequently create the system design in the computer.
While the GA/EA approach can help in specific cases, it is
well known that evolution from scratch is slow. Thus it is
helpful to take advantage of the capability of human
beings to contribute to the design of systems. The
objective of the use of evolutionary process described here
is to avoid relying upon an individual human being to
design systems that can perform highly complex tasks. A
computer by itself cannot solve such problems either. Our
objective here is to embed the process of design into that
of many human beings (using computers) coordinated
through an evolutionary process

A modern view of evolution recognizes that the
process of evolution involves ecosystems of
interdependent organisms. Such networks of dependency
are generally characteristic of complex systems and are
present at every level: inside the organism in genomic
networks and neural networks, and outside of them in food
webs and ecosystems [21]. The existence of networks
reflects the importance of thinking about patterns of be-
havior in addition to the behavior of individual compon-
ents. Still, for the purpose of simplicity we can start by
using the concepts of evolution as a process of reproduc-
tion with variation and selection with competition to
guide our understanding of key aspects of how processes
inside and between organisms take place in such networks.

Since one of the basic concepts of evolution is
competition, one question that has been of concern is the
origins of cooperation. This is particularly relevant to
understanding the nature of networks, which include
various dependencies including cooperation as well as
competition. Fundamentally, it should be recognized that
cooperation and competition are not counter to each other
if they exist at different levels of organization [9]. Indeed,
they are essential complements; cooperation at one level of
organization is necessary for competition at a higher level
of organization, and vice versa. This becomes apparent
when we consider team sports where cooperation between
players is necessary for competition between teams, and
the competition between teams gives rise to cooperation
between players. This multilevel perspective is different
than conventional perspectives and is an essential part of
the modern understanding of the evolution and
development of complex systems

Another important aspect of evolution arises from
considering the continued existence of bacteria at the same
time as human beings. Why should bacteria, that existed
long before human beings, and therefore presumably are
more primitive, continue to exist? Or if they exist, why
should human beings exist as well? This question points
to the remarkable diversity of life that exists as a

counterpoint to the centrality of selection in the
evolutionary process. A simple interpretation of selection
(survival of the fittest) would seem to suggest that there
should be only one type of organism. The reason this is
not the case ultimately resides in the existence of diverse
resources. Diverse resources account for diverse organisms
because a single organism type is not well suited to
consume all of the different types of resources. Even
though under some circumstances bacteria and human
beings can compete for the same resources, there are many
times when, due to the scale of the resources or their
composition, there is no direct competition. Indeed, it is
hard to determine whether it is more important to consider
the cooperation or competition between human beings and
bacteria in the context of the many different interactions
between them (including symbiotic, parasitic and
pathogenic). Thus the question of whether human beings
or bacteria are more evolved is not really the central
question, the key question has to do with which is better
at consuming which kind of resources. Again, the
diversity of entities and components must be considered in
developing complex systems.

A third aspect of evolution is recognizing that in
complex organisms like the human being, the process of
adaptation through learning can itself be considered a kind
of evolutionary process. This kind of evolution is often
called "mimetic" evolution. The internal process that
occurs in trial and error learning involves multiple
possible concepts and processes. Through this process the
more effective ones are selected within the specific context
or environment in which people exist. The learning that
occurs through communication between people corres-
ponds to replication of patterns of thought. The rapid pace
of human social evolution can be compared with the rapid
pace of bacterial biological evolution. This comparison
suggests that even when large complex structures exist, the
evolutionary process of change continues to be rapid
through the ongoing change of internal parts.

While the development of system-wide evolutionary
process is not the standard use of evolution in engineering,
it can be considered an extension of how innovation
actually takes place in a market place. The larger process in
this case is one in which many different companies are
competing and independently innovating with tests of the
effectiveness of their products being seen through their
adoption by people who choose which products to buy and
use.

2.2.1 Enlightened evolutionary engineering
The basic concept of designing an evolutionary pro-

cess is to create an environment in which a process of in-
novation and creative change takes place. To do this we
develop the perspective that tasks to be performed are ana-
logous to resources in biology. Individual parts of the sys-
tem, whether they are hardware, software or people involv-
ed in executing the tasks are analogous to various organ-
isms that are involved in an evolutionary process. Changes
in the individual parts take place through intro-ducing
alternate components (equipment, software, train-ing or by
moving people to different tasks). All of these changes are

part of the dynamics of the system. Within this
environment it is possible for conventional engineer-ing of
equipment or software components to occur. The focus of
such engineering efforts is on change to small parts of the
system rather than on change to the system as a whole.
This concept of incremental replacement of components
(equipment, software, training, tasks) involves changes in
one part of the system, not in every part of the system.
Even when the same component exists in many parts of
the system, changes are not imposed on all of these parts
at the same time. Multiple small teams are involved in
design and implementation of these changes. It is
important to note that this is the opposite of
standardization�the explicit imposition of variety. The
development environment should be constructed so that
exploration of possibilities can be accomplished in a rapid
(efficient) manner. Wider adoption of a particular change,
corresponding to reproduction in biology, occurs when
experience with a component indicates improved
performance. Wider adoption occurs through informed
selection by individuals involved. This process of
"selection" explicitly entails feedback about aggregate
system performance in the context of real world tasks.

Thus the process of innovation involves multiple
variants of equipment, software, training or human roles
that perform similar tasks in parallel. The appearance of
redundancy and parallelism is counter to the conventional
engineering approach which assumes specific function
assignments rather than parallel ones. This is the primary
difference between evolutionary processes and incremental
approaches to engineering. The process of overall change
consisting of an innovation that, for example, replaces one
version of a particular type of equipment with another,
occurs in several stages. In the first stage a new variant of
the equipment (or other component) is introduced.
Locally, this variant may perform better or worse than
others. However, overall, the first introduction of the
equipment does not significantly affect the performance of
the entire system because other equipment is operating in
parallel. The second stage occurs if the new variant is more
effective: others may adopt it in other parts of the system.
As adoption occurs there is a load transfer from older
versions to the new version in the context of competition,
both in the local context and in the larger context of the
entire system. The third stage involves keeping older
systems around for longer than they are needed, using
them for a smaller and smaller part of the load until
eventually they are discarded 'naturally'. Following a
single process of innovation, is, however, not really the
point of the evolutionary engineering process. Instead, the
key is recognizing the variety of possibilities and
subsystems that exist at any one time and how they act
together in the process of innovation.

The conventional development process currently used
in large engineering projects is not entirely abandoned in
the evolutionary context. Instead, it is placed within a
larger context of an evolutionary process. This means that
individuals or teams that are developing parts of the
system can still use well known and tested strategies for
planning, specification, design, implementation and
testing. The important caveat to be made here is that these

tools are limited to parts of the system whose complexity
is appropriate to the tool in use. Also, the time scale of
the conventional development process is matched to the
time scale of the larger evolutionary process so that field
testing can provide direct feedback on effectiveness. This
is similar to various proposals suggested for incremental
iterative engineering. What is different, is the importance
of parallel execution of components in a context designed
for redundancy and robustness so that the implementation
of alternatives can be done in parallel and effective
improvements can be combined. At the same time, the
ongoing variety provides robustness to changes in the
function of the system. Specifically, if the function of the
system is changed because of external changes, the system
can adapt rapidly because there are various possible
variants of subsystems that can be employed.

The process of generational variation in biology
includes sexual reproduction. This is analogous to the
formation of composite structures or systems when a
modular architecture is used [6]. In this context,
�composite� refers to making new combinations of system
modules as a method of introducing new variants. Indeed,
the use of modular composite patterns is a basis for
creativity in any context [6 (ch. 2)]. The importance and
attention that should be devoted to establishing module
boundaries reflects the non-universal nature of the
functional performance of different modular architectures
and their adaptiveness. Modular boundaries and
encapsulation methods should be used so that
interdependence between modules is simpler than
dependence within modules.

The conventional division between human beings and
machines should be modified in the context of thinking
about evolutionary engineering processes. Human beings
and the technology (computers, communication devices,
electronic networks, etc.) should all be understood to be
part of the system. Moreover, the process of creating
system components (training, design, engineering,
construction) also becomes part of the system itself. In
particular, human beings are interactive agents in the
process of creation (design, development) and the process
of implementation, as well as in the process of system
function. Similarly, computers are also interactive agents
involved in the processes of design, development and
function.

Evolution is a process of cyclical feedback and the
role of the dynamics of this feedback often leads to a need
to balance different performance aspects that are mutually
contradictory. Understanding the balance needed is a
current area of research and simple guidelines are not yet
known. The best that can be done is to alert the manager
of the evolutionary engineering process to the symptoms
of effective evolutionary change so that they can be
recognized and modifications �on the fly� can be made in
the evolutionary environment with the objective of
improving the balance. Since the evolutionary engineering
process will be designed in such a way that iterative
refinement of the process itself is possible, this is not a
critical limitation. Indeed, this is consistent with the idea
that comprehensive advance planning (as currently

understood) is often not possible and that the system is
designed to be effective in an adaptive process.

The central contradiction here is that the process of
selection and competition after some time generally gives
rise to a single dominant type that inhibits innovation.
This is known as the "founder effect" in biology and
sociology and as monopolization in economics. To avoid
internal inhibition of change, the process must be designed
to promote change and destabilize uniform solutions to
problems, when it is appropriate (i.e., dictated by system
performance in the context of interaction and feedback with
the external environment). Such promotions of change
might on the surface appear counter to the process of
selection itself, since over the short term, promoting
alternatives to established solutions appears to be counter
to selection of the most effective system known at that
time.

Another balance that must be reached is between
promoting the propagation and adoption of improved
systems and inhibiting propagation in order to allow
sufficient time for testing. If adoption is too rapid, a
solution that appears effective over the short term may
come to dominate before it is tested in circumstances that
are rare but important, leading to major failures when these
circumstances arise. [29] If adoption is too slow, the
system cannot effectively evolve, giving rise to an
inhibition of change as previously noted.

2.2.2 Application to air traffic control
How can we apply evolutionary processes to implement
change in a context where risk of large scale catastrophe is
high? Our primary example will be the air traffic control
system. Similar problems exist in other contexts including
the nuclear power industry, and in various military
contexts such as with nuclear weapons.

The problem with innovation in the air traffic control
system does not appear to have been solved because we
still have the "safety veto": How can we introduce changes
in what an air traffic controller is doing without
introducing grave risks to people in airplanes? This was
the problem that eventually derailed the Advanced
Automation System. Still today, the process of innovation
in the air traffic control system is very slow because of a
need to extensively test any proposed change. The key to
solving this problem is recognizing that there already
exists a process of innovation in the air traffic control
system � the training of new air traffic controllers. Air
traffic controllers undergo extensive, multi-stage on the
job training [1]. A key one for our purposes is the stage in
which the air traffic controller in training is acting as
Controller, but a second Controller (supervisor) is present
with override capability over the trainee. Thus, when a
person is being trained, he or she performs the task under
supervision with override to prevent accidents from
happening. This same mechanism can be used for air
traffic control innovation in hardware and software as well
as in other processes. The key is to have two different
stations that can perform the same functions, where one of
them has an innovation in hardware or software, and the
other with the more conventional system has override

capability over the first. In this case both of the air traffic
controllers would be experienced controllers, not trainees.
This dual system can be used to test new options for air
traffic control stations while providing the same standard
of safety. (Note that this dual system is not the same as
the current dual system of Radar Controller and Radar
Associate Controller, but is either in addition to, or
possibly as a substantial modification of, this system).

There are many possible innovations that could be
tested. For example, the traditional air traffic control
stations consist of monochrome screens with visual
sweeps of the air space. Any change in this system could
introduce problems. For example, the sweeping of the
screen appears obsolete compared to modern screen
technology and only a residue of the limited technology
that existed in the 1950s. However, a process of sweeping
may be useful to keep a person alert in the context of
continuous monitoring. In this case, an unchanging screen
may lead to failures rather than improvements. How can
this be tested safely? By introducing a version of new
screens that involves continuous presentation, color
displays or other changes in a trainer context. Allowing
sufficient time for an air traffic controller to become used
to the new system, the override capability can be retained
for an extended period of time to test the system under
many contexts: day, night, low and high traffic, extreme
weather, etc. Such redundant execution of tasks is needed
as well as maintaining older solutions that are more
extensively tested. Indeed, we can expect that many
variations on displays would be distracting or ineffective
at bringing the key information to the attention of the air
traffic controllers. Without such extensive field testing
mistakes would surely be made.

The idea of using a double "trainer" has a biological
justification through analogy with the double set of chro-
mosomes that exist in humans and animals generally. The
double set of chromosomes acts at least in part as a secur-
ity system to buffer the effects of changes in the genome.
In this case either of the chromosomes may be changed so
that there are two different parallel systems that are both
undergoing change. The probability of failure would be
high, except that they both exist and failure of one does
not generally lead to failure of function of the organism.

The overall picture of the use of such trainers is that
most if not all air traffic controllers would work in pairs,
where one has override capability. It is also possible to set
up a double override capability to allow mutual oversight.
It may be argued that the cost of having double the
number of air traffic controllers is prohibitive. However,
the alternative has already been demonstrated to be
ineffective at the level of $3-6B in direct wasted expenses
for modernization [35], while the ongoing losses to the
industry on an annual basis were billions of dollars per
year due to canceled and delayed flights caused by
ineffectiveness of the air traffic control system.

3 Conclusions
The complexity of large engineering projects has led to the
abandonment of many expensive projects and led to highly
impaired implementations in other cases. The cause of

such failures is the complexity of the projects themselves.
A systematic approach to complex systems development
requires an evolutionary strategy where the individuals and
the technology (hardware and software) are all part of the
evolutionary process. This evolutionary process must itself
be designed to enable rapid changes while ensuring the
robustness and safety. The systematic application of
evolutionary process in this context is an essential aspect
of innovation when complex systems with complex
functions and tasks are to be created.

This paper has proposed that complex engineering
projects should be managed as evolutionary processes that
undergo continuous rapid improvement through iterative
incremental changes performed in parallel and thus is
linked to diverse small subsystems of various sizes and
relationships. Constraints and dependencies increase
complexity and should be imposed only when necessary.
This context must establish necessary security for task
performance and for the system that is performing the
tasks. In the evolutionary context, people and technology
are agents that are involved in design, implementation and
function. Management's basic oversight (meta) tasks are to
create a context and design the process of innovation, and
to shorten the natural feedback loops through extended
measures of performance.

References
[1] 3120.4 FAA Handbook.

[2] See e.g. Agile Software Development, CrossTalk,
Vol. 15, No. 10, Oct. 2002.

[3] C. Appleby and C. Wilder, �Moving violation: state
audit sheds light on California's runaway DMV network
project,� InformationWeek, No. 491, p. 17, Sep. 5, 1994.

[4] W. R. Ashby, An Introduction to Cybernetics,
Chapman and Hall, London, 1957.

[5] R. Axelrod and M. D. Cohen, Harnessing Complex-
ity: Organizational Implications of a Scientific Frontier,
Basic Books, New York, 2000.

[6] Y. Bar-Yam, Dynamics of Complex Systems, Perseus,
Reading, MA, 1997.

[7] Y. Bar-Yam, Enlightened Evolutionary Engineering /
Implementation of Innovation in FORCEnet, Report to
Chief of Naval Operations Strategic Studies Group, 2002
(Brief, 2000).

[8] Y. Bar-Yam, �Unifying Principles in Complex Sys-
tems,� in Converging Technology (NBIC) for Improving
Human Performance, M. C. Roco and W. S. Bainbridge,
Eds., in press.

[9] Y. Bar-Yam, �General Features of Complex Sys-
tems,� in UNESCO Encyclopaedia of Life Support Sys-
tems, in press.

[10] J. S. Bozman, �DMV disaster: California kills failed
$44M project,� Computerworld, Vol. 28, No. 19, pp. 1
and 16, May 9, 1994.

[11] D. Braha and O. Maimon, A Mathematical Theory of
Design: Foundations, Algorithms and Applications,
Kluwer, Boston, 1998.

[12] �California State Auditor/Bureau of State Audits,
Health and Welfare Agency: Lockheed Martin Information
Management Systems Failed To Deliver and the State
Poorly Managed the Statewide Automated Child Support
System,� Summary of Report Number 97116, Mar. 1998.

[13] W. S. Cohen, �Computer Chaos: Billions Wasted
Buying Federal Computer Systems,� Investigative Re-
port, U.S. Senate, Washington, D.C., 1994.

[14] Committee on Transportation and Infrastructure
Computer Outages at the Federal Aviation Administra-
tion's Air Traffic Control Center in Aurora, Illinois [Field
Hearing in Aurora, Illinois] hpw104-32.000 HEARING
DATE: 09/26/1995.

[15] DoD Directive 5000.1, �The Defense Acquisition
System,� May 12, 2003.

[16] H. Drummond, Escalation in Decision-Making, Ox-
ford University Press, Oxford, 1996.

[17] L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial
Intelligence through Simulated Evolution, Wiley, New
York, 1966.

[18] B. Goodwin, How the Leopard Changed its Spots:
The Evolution of Complexity, Charles Scribner's Sons,
New York, 1994.

[19] J. H. Holland, Adaptation in Natural and Artificial
Systems, 2d ed. MIT Press, Cambridge, 1992.

[20] J. H. Holland, Hidden Order: How Adaptation
Builds Complexity, Addison-Wesley, Reading, MA,
1995.

[21] S. A. Kauffman, �Metabolic Stability and Epigenesis
in Randomly Constructed Genetic Nets,� J. theor. Bio.,
Vol. 22, pp. 437-467, 1969.

[22] S. A. Kauffman, The Origins of Order: Self Organi-
zation and Selection in Evolution, Oxford University
Press, New York, 1993.

[23] R. T. King, Jr., �California DMV's computer over-
haul ends up as costly ride to junk heap,� Wall Street
Journal, East Coast Edition, p. B5, Apr. 27, 1994.

[24] M. Langberg, �Obsolete computers stall DMV's fu-
ture,� San Jose Mercury News, p. 1D, May 2, 1994.

[25] G. S. Lynn, J. G. Morone and A. S. Paulson, �Mar-
keting and discontinuous innovation: The probe-and-learn
process,� California Management Rev., Vol. 38, No. 3,
pp. 8�36, 1996.

[26] E. Oz, �When professional standards are lax: the
CONFIRM failure and its lessons,� Communications of
the ACM, Vol. 37, No. 10, pp. 29-36, Oct. 1994.

[27] A. Pantages, �Snatching Defeat from the Jaws of Vic-
tory,� News Scene (monthly column), Datamation, Mar.
1970.

[28] M. T. Pich, C. H. Loch and A. De Meyer, �On Un-
certainty, Ambiguity and Complexity in Project Man-
agement� Management Science 48, 1008-1023, 2002.

[29] E. Rauch, H. Sayama and Y. Bar-Yam, �The role of
time scale in fitness,�Phys. Rev. Lett. 88, 228101-4 2002.

[30] �Report of the Inquiry Into The London Ambulance
Service,� The Communications Directorate, South West
Thames Regional Health Authority, Feb. 1993.

[31] D. K. Sobek, A. C. Ward and J. K. Liker, �Toyota�s
principles of set-based concurrent engineering,� Sloan
Management Rev., Vol. 40, pp. 67�83, 1999.

[32] Standish Group International, The CHAOS Report,
1994.

[33] J. Sterman, Business Dynamics: Systems Thinking
and Modeling for a Complex World, McGraw-Hill, New
York, 2000.

[34] R. Strengel, �An Overtaxed IRS,� Time, Apr. 7,
1997.

[35] U.S. House Committee on Transportation and Infra-
structure, FAA Criticized For Continued Delays In Mod-
ernization Of Air Traffic Control System, Mar. 14, 2001.

[36] R. W. Veryzer, �Discontinuous innovation and the
new product development process,� J. Product Innovation
Management, Vol. 15, pp. 304�321, 1998.

[37] T. Walsh, �California, Lockheed Martin part ways
over disputed SACSS deal,� Government Computer News
State and Local, Feb. 1988.

[38] P. Ward, �Congress may force end to Air force inven-
tory project,� Computerworld, Vol. IX, No. 49, p.3, Dec.
3, 1975.

[39] G. Webb, �DMV-Tandem flap escalates,� San Jose
Mercury News, p. 1A, May 18, 1994.

[40] G. Webb, �DMV's $44 million fiasco: how agency's
massive modernization project was bungled,� San Jose
Mercury News, p. 1A, Jul. 3, 1994.

