Researchers Map Entire Cell Behavior


Cite as:

B. de Bivort, S. Huang and Y. Bar-Yam, Dynamics of cellular level function and regulation derived from murine expression array. PNAS 101, 17687-92, 2004.


PNAS Press Release

Complex systems researchers have identified the key behavior of cells, paving the way to medical applications. Harvard University and New England Complex Systems Institute researchers Benjamin de Bivort and Yaneer Bar-Yam describe their findings in this weeks' Proceedings of the National Academy of Sciences. Using measurements of genetic activity, the researchers identified 12 major functional units of the cell and how they influence each other. These functional units bring about the energy production in the cell, the process of replication, cellular senses and other key functions.

Several years ago biologists were working hard to map the human genome. Today they are trying to understand how biological systems operate: how parts of the cell interact to make the cell function. The paper by de Bivort and Bar-Yam takes a major step forward by showing how genetic data can lead to understanding of how an entire cell works. They not only demonstrate this possibility, but actually determine the interactions between parts of the cell.

Biologists have been able to use the mapping of the genome to develop ways of seeing into the cell. The problem is that they get so much data it is hard to see what is what. For example, the data used for this study showed what 16,000 genes were doing. With all of those data, how can one figure out how genes are interacting with each other? For the first time, this paper showed how it can be done: First by grouping the genes together into modules by the similarity of their behavior; Then by looking at how the behavior of these groups changed when the cell was exposed to various chemicals.

The method used data that showed how various medically important chemicals changed the way cells behave. The researchers were able to demonstrate that some of the changes led to more changes later in time. By studying these changes, they were able to determine how the parts of the cell affect each other. Once they found this out, they could predict what the cell did when it was exposed to chemicals that were not part of the original data. Overall the experiments on which their study is based had 32 different chemical influences, but the researchers found that using 27 of these influences they could predict very accurately what happened with the rest of them. This shows that their results capture the actual behavior of the cell. Now they can predict what will happen with new chemicals.

Researchers have been optimistic that the massive amounts of data that are currently available from biological experiments will allow breakthroughs in medicine. A major obstacle, however, has been the ability to see how new drugs will affect the entire cell. The model that de Bivort and Bar-Yam developed may do just that.


Back to Dynamics of cellular level function and regulation derived from murine expression array data page

Cellular Function Diagram

 

 

Phone: 617-547-4100 | Fax: 617-661-7711 | Email: office at necsi.edu

277 Broadway Cambridge, MA USA