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Abstract
Almost all complex artifacts nowadays, including physical artifacts such as airplanes, as

well as informational artifacts such as software, organizations, business processes, plans
and schedules, are defined via the interaction of many, sometimes thousands of
participants, working on different elements of the design. This collaborative design

process is typically expensive and time-consuming because strong interdependencies
between design decisions make it difficult to converge on a single design that satisfies
these dependencies  and is acceptable to all participants. Recent research from the

complex systems and negotiation literatures has much to offer to the understanding of the
dynamics of this process. This paper reviews some of these insights and offers
suggestions for improving collaborative design.

The Challenge: Collaborative Design Dynamics
Almost all complex artifacts nowadays, including physical artifacts such as airplanes, as

well as informational artifacts such as software, organizations, business processes, plans
and schedules, are defined via the interaction of many, sometimes thousands of
participants, working on different elements of the design. This collaborative design

process is challenging because strong interdependencies between design decisions make
it difficult to converge on a single design that satisfies these dependencies and is
acceptable to all participants. Current collaborative design approaches are as a result

typically characterized by heavy reliance on expensive and time-consuming processes,
poor incorporation of some important design concerns (typically later life-cycle issues
such as environmental impact), as well as reduced creativity due to the tendency to

incrementally modify known successful designs rather than explore radically different
and potentially superior ones.



Research on negotiation focuses on understanding what local behaviors are to be

expected from (relatively small numbers of) self-interested agents attempting to come to
agreements in the face of interdependencies. Complex systems research compliments this
perspective by attempting to understand the global dynamics that emerge as the collective

effect of many such local decisions. These two perspectives, when brought together, have
we believe much to offer to a understanding of the dynamics of collaborative design. The
remainder of this paper is dedicated to exploring some of these insights.

A Model of Collaborative Design
Let us first establish a working definition of collaborative design. A design (of physical

artifacts such as cars and planes as well as behavioral ones such as plans, schedules,
production processes or software) can be represented as a set of issues (sometimes also
known as parameters)  each with a unique value. A complete design for an artifact

includes issues that capture the requirements for the artifact, the specification of the
artifact itself (e.g. the geometry and materials), the process for creating the artifact (e.g.
the manufacturing process) and so on through the artifacts’ entire life cycle. If we

imagine that the possible values for every issue are each laid along their own orthogonal
axis, then the resulting multi-dimensional space can be called the design space , wherein
every point represents a distinct (though not necessarily good or even physically possible)

design. The choices for each design issue are typically highly interdependent. Typical
sources of inter-dependency include shared resource (e.g. weight, cost) limits, geometric
fit, spatial separation requirements, I/O interface conventions, timing constraints etc.

Figure 1: A Model for Collaborative Design

Collaborative design is performed by multiple participants (representing individuals,
teams or even entire organizations), each potentially capable of proposing values for
design issues and/or evaluating these choices from their own particular perspective (e.g.

manufacturability). Figure 1 below illustrates this model: the small black circles represent
design issues, the links between the issues represent design issue inter-dependencies, and
the large ovals represent the design subspace (i.e. subset of design issues) associated with



each design participant. In a large artifact like a commercial jet there may be millions of

components and design issues, hundreds to thousands of participants, working on
hundreds of distinct design subspaces, all collaborating to produce a complete design.

Some designs are better than others. We can in principle assign a utility value to each
design and thereby define a utility function that represents the utility for every point in the
design space (though in practice we may only be able to assess comparative as opposed

to absolute utility values). A simple utility function might look like the following:
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Figure 2. A simple utility function.

The goal of the design process can thus be viewed as trying to find the design with the

optimal (maximal) utility value, though often optimality is abandoned in favor of ‘good
enough’.

The key challenge raised by the collaborative design of complex artifacts is that the
design spaces are typically huge, and concurrent search by the many participants through
the different design subspaces can be expensive and time-consuming because design

issue interdependencies lead to conflicts (when the design solutions for different
subspaces are not consistent with each other). Such conflicts severely impact design
utility and lead to the need for expensive and time-consuming design rework. Improving

the efficiency, quality and creativity of the collaborative innovative design process
requires, we believe, a much better understanding of the dynamics of such processes and
how they can be managed. In the next section we will review of the some key insights

that negotiation and complex systems research offers for this purpose.

Insights from Complex Systems and Negotiation Research
A central  focus of complex systems research is the dynamics of distributed networks, i.e.
networks in which there is no centralized controller, so global behavior emerges solely as
a result of concurrent local actions. Such networks are typically modeled as multiple

nodes, each node representing a state variable with a given value. Each node in a network
tries to select the value that maximizes its consistency with the influences from the other



nodes. The dynamics of such networks emerge as follows: since all nodes update their

local state based on their current context (at time T), the choices they make may no
longer be the best ones in the new context of node states (at time T+1), leading to the
need for further changes.

The negotiation literature adds the following refinement to this model. Each one of the
nodes is self-interested, i.e. attempts to maximize its own local utility, at the same time it

is seeking a satisfactory level of consistency with the nodes it is inter-dependent with. A
central concern of negotiation research is designing the rules of encounter between inter-
dependent nodes such that each node is individually incented to make decisions that

maximize social welfare, i.e. the global utility of the collected set of local decisions. In
this case, we can define global utility simply as the sum of node utilities plus the degree
to which the inter-node influences are satisfied.

Is this a useful model for understanding the dynamics of collaborative design? We
believe that it is. It is straightforward to map the model of collaborative design presented

above onto a network. We can map design participants onto nodes, where each
participant tries to maximize the utility of the subsystem it is responsible for, while
ensuring its decisions satisfy its dependencies (represented as the links between nodes)

with other subsystems. As a first approximation, it is reasonable to model the utility of a
design as the local utility achieved by each participant plus a measure of how well all the
decisions fit together. Even though real-world collaborative design clearly has top-down

elements early in the process, the sheer complexity of many design artifacts means that
eventually no one person is capable of keeping the whole design in his/her head and
assessing/refining its global utility. Centralized control of the design decisions becomes

impractical, so the design process is dominated perforce by concurrent subsystem design
activities (performed within the nodes) done in parallel with subsystem design
consistency checks (assessed by seeing to what extent inter-node influences are satisfied).

We will assume, for the purposes of this paper, that individual designers are reasonably
effective at optimizing their individual subsystems.

The key factor determining network dynamics is the nature of the influences between
nodes. There are two important distinctions: whether the influences are linear or not, and
whether they are symmetric or not. We will consider each one of these distinctions in
turn, with an important side trip into the negotiation literature to understand the dilemmas

raised by the presence of self-interested agents. This will be followed by a discussion of
subdivided network topologies, and the role of learning. Unless indicated otherwise, the
material on complex systems presented below is drawn from (Bar-Yam 1997).



Linear vs. Non-Linear Networks

Non-Linearity Produces Multi-Optimum Utility Functions: If the value of nodes is a
linear function of the influences from the nodes linked to it, then the system is linear,
otherwise it is non-linear. Linear networks have a single attractor, i.e. a single

configuration of node states that the network converges towards no matter what the
starting point, corresponding to the global optimum. Their utility function thus looks like
that shown in Figure 2 above. This means we can use a ‘hill-climbing’ approach (where

each node always moves directly towards increased local utility) because local utility
increases always move the network towards the global optimum.

Non-linear networks, by contrast, are characterized by having utility functions with
multiple peaks (i.e. local optima) and multiple attractors, as in Figure 3:

Utility

A design

Design alternatives
Figure 3. A multiple optima utility function.

A key property of non-linear networks is that search for the global optima can not be
performed successfully by pure hill-climbing algorithms, because they can get stuck in
local optima that are globally sub-optimal. Consider, for example, what happened in

Figure 3 above. Hill-climbing took the design to the top of a local optimum which has
substantially lower utility than some other designs.

To make this concrete, let us examine the following simple example: a network
consisting of binary-valued nodes where each node is influenced to have the same value
as the nodes it is linked to, and all influences are equally strong (Figure 4):



Node A

Node C

value = 1

value = 1

value = 0

value = 0

value = 0

Node FNode B

value = 1

Node D

Node E

Figure 4: A simple network illustrating how networks can get stuck in local optima.

Node A, for example, is influenced to have the same value as Node C, while Node C is
influenced to have the same value as Nodes A, B and D. For simplicity’s sake, we
assume that the global utility is determined solely by the degree to which the inter-node

influences are satisfied. We can imagine using this network to model a real-world
situation wherein there are six subsystems being designed, with two equally optimal
design options for each, and we want them to use matching interfaces.

This network has reached a stable state, i.e. no single node change will result in an
increase in the number of satisfied influences. If we change the value of node A from 0 to
1, it will violate its one influence so this change will not be made. If we change the value

of Node C to 1, it will now satisfy the influence with Node D but violate two influences
(with Nodes A and B), resulting in a net loss in the number of satisfied influences, so this
change will not be made either. The analogous argument applies to all the other nodes in

the network. The system will not as a result converge on a global optimum (i.e. an ideal
design where all the influences are satisfied), even though one does exist (where all nodes
have the same value).

A range of techniques have emerged that are appropriate for finding global optima in
multi-optima utility functions, all relying on the ability to search past valleys in the utility

function. Stochastic approaches such as simulated annealing have proven quite effective
(Kirkpatrick, Gelatt et al. 1983). Simulated annealing endows the search procedure with a
tolerance for moving in the direction of lower utility that varies as a function of a virtual

‘temperature’. At first the temperature is high, so the system is as apt to move towards
lower utilities as higher ones. This allows it to range widely over the utility function and
possibly find new higher peaks. Since higher peaks generally tend to also be wider ones,

the system will spend most of its time in the region of high peaks. Over time the
temperature decreases, so the algorithm increasingly tends towards pure hill-climbing.



While this technique is not provably optimal, it has been shown to get close to optimal

results in most cases.

A Social Dilemma with Self-Interested Agents: Annealing runs into a dilemma, however,

when applied to systems with self-interested agents. Let us assume that at least some
actors are ‘hill-climbers’, concerned only with maximizing their local utilities, while
others are ‘annealers’, willing to accept, at least temporarily, lower local utilities as part

of the exploratory process. We can use a simulation approach to explore what happens.
Table 1 summarizes the results for such experiments, giving the local and global utilities
achieved for different pairings of agent strategies in simulated non-linear negotiations:

Agent 2 hill-climbs Agent 2 anneals

Agent 1 hill-climbs [.86]

.73/.74

[.86]

.99/.51

Agent 1 anneals [.86]
.51/.99

[.98]
.84/.84

Table 1: Annealing vs hill-climbing agents.

In this table, the cell values are laid out as follows:

[<global optimality>]

<agent 1 optimality >/<agent 2 optimality>

Details on the negotiation results described in this paper are available, unless otherwise

specified, in (Klein, Faratin et al. 2002a) and (Klein, Faratin et al. 2002b).

These results show that, while annealers increase global utility, and are therefore highly

desirable, annealers always fare individually worse than hill-climbers when both are
present. Hill-climbing is thus a ‘dominant’ strategy: no matter what strategy the other
agent uses, it is better to be a hill-climber. If all agents do this, however, then they forego

the higher individual utilities they would get if they both annealed. Individual strategic
considerations thus drive the system towards the strategy pairing with the lowest utility
values.

What can be done about this? This pattern of utility values is an instance of a well-known
phenomenon in game theory known as the “prisoner’s dilemma” (Osborne and
Rubinstein 1994). It has been shown that this dilemma can be avoided if there are



repeated interactions between agents (Axelrod 1984). The idea is simple. Each agent uses

an annealing strategy at first, but if it determines that the agent it is negotiating with is
using hill-climbing, it itself then switches to hill-climbing for its future negotiations with
that agent, thereby forcing them both into the ‘lose-lose’ quadrant of Table 1. It turns out

that this ‘tit for tat’ approach incents annealing behavior in all agents, assuming that they
negotiate with each other multiple times. This idea can be refined with the addition of a
‘reputation mechanism’, wherein agents consult a database of previous negotiations (in

addition to their individual experience) in order to determine whether the agent they
currently face tends to be an annealer or hill-climber. Ideally, however, we would prefer
to find a way to incent annealing behavior within the context of a single negotiation,

without the requirement of multiple interactions. Can this be done?

Some apparently reasonable approaches are, it turns out, quite ineffective. One approach,

for example, is what we can call ‘adaptive’ annealing. A negotiation typically consists of
a relatively large number of offers and counter-offers, resulting in increasingly better
interim agreements that eventually are accepted as final by both parties. An agent could

therefore in principle switch in mid-stream from being an annealer to being a hill-climber
if it determines that the other agent is being a hill-climber. Determining the strategy type
of the agent you are negotiating with is in fact relatively easy: an annealer tends to accept

a much higher percentage of interim proposals than a hill-climber. The problem with this
approach is that determining the type of an agent in this way takes time. Our simulations
have shown that the divergence in acceptance rates between annealers and hill-climbers

only becomes clear after most of the utility has been committed, so it is too late to fully
recover from the consequences of having started as an annealer if you negotiated with a
hill-climber. Hill-climbing therefore remains the dominant strategy. Another possibility is

for annealers to simply be less concessionary, i.e. less willing to accept utility-decreasing
interim agreements. This in fact allows us to eliminate the poor annealer payoffs that
underlie the prisoner’s dilemma, but only at the cost of radically reduced global utility. In

both cases, we are unable to incent agent strategies that optimize the global utility of the
outcome.

Resolving the prisoners’ dilemma within the scope of a single negotiation can be
achieved, however, through the use of what we call a ‘parity-enforcing annealing
mediator’. Rather than requiring that the agents anneal, we move the annealing into a
third party we call a mediator. In this approach, possible agreements are generated (in our

experiments they were generated by the mediator, but this is a not a critical part of the
scheme) and then voted on by the negotiating agents. The mediator is a kind of annealer:
it is endowed with a time-decreasing willingness to at least temporarily follow up on

design proposals that one or both agents voted against. Agents are free to remain hill-



climbers in their voting behavior, and thus avoid making harmful concessions. The

mediator, by virtue of being willing to provisionally pursue utility-decreasing
agreements, can traverse valleys in the agents’ utility functions and thereby lead the
agents to win-win solutions. Paradoxically, using a mediator that occasionally ignores

agent preferences leads to outcomes that are better for both agents.

Achieving maximal global utilities in this scheme requires that agents be able to annotate

their votes with strength information. A binary scheme is sufficient, wherein agents
annotate their accept votes as being either strong or weak. This allows the possibility of
‘over-rides’, wherein the mediator pursues an interim agreement that was strongly

preferred by one agent and weakly rejected by another. Over-rides are important because
such agreements are likely to increase global utility. Agents might of course be tempted
to exaggerate in such contexts, marking every vote as being a strong one. But this

possibility can be foiled by enforcing running parity on the number of times each agent
over-rides the other. This works for the following reason. One can think of this procedure
as giving agents ‘tokens’ that they can use to gain over-rides. A truthful agent spends its

tokens exclusively on over-rides that truly offer it a strong local utility increase. An
exaggerator, on the other hand, will spend tokens even when the utility increment it
derives is relatively small. At the end of the day, the truthful agent has spend its tokens

more wisely and to better effect.

Lessons: How do these insights apply to collaborative design? Generally speaking, linear

networks represent a special case (only a tiny fraction of all possible influence
relationships are linear), but they have proven adequate for modeling what has been
called routine design. Routine design involves highly familiar requirements and design

options, as for example in automobile brake or transmission design (Brown 1989). In
these contexts, designers can usually start the design process near enough to the final
optimum that the process acts as if it has a single attractor. Previous research on design

dynamics has focused on this class of design model, generating such useful results as
approaches for identifying design process bottlenecks (Smith and Eppinger 1997) and for
fine-tuning the lead times for design subtasks (Eppinger, Nukala et al. 1997).

Rapid technological and other changes have made it increasingly clear, however, that
many of the most important collaborative design problems (e.g. concerning software,
biotechnology, or electronic commerce) involve innovative design, radically new

requirements, and unfamiliar design spaces. It is often unclear how to achieve a given set
of requirements. There may be multiple very different good solutions, and the best
solution may be radically different than any that have been tried before. For such cases



non-linear networks seem to represent a more accurate model of the collaborative design

process.

This has important consequences. One is a tendency to stay with well-known designs.

When a utility function has widely separated optima, once a satisfactory optimum is
found the temptation is to stick to it. This design conservatism is exacerbated by the fact
that it is often difficult to compare the utilities for radically different designs. We can

expect this effect to be especially prevalent in industries, such as commercial airlines and
power plants, which are capital-intensive and risk-averse, since in such contexts the cost
of exploring new designs, and the impact of getting it wrong, can be prohibitive.

Another consequence is that collaborative design as currently practiced is probably quite
prone to getting stuck in local optima that may be significantly worse than radically

different alternatives. Annealing-like processes potentially applicable to addressing this
problem are widely used in human collaborative design settings. ‘Brainstorming’, for
example, with its emphasis on not pruning candidate solutions too quickly, can be viewed

as a kind of annealing. Designers are, however, generally much more strongly
encouraged to create a good design for their own subsystems, than to concede to make
someone else’s job easier. This incentive structure leads to the “prisoner’s dilemma”

described above.

The prisoner’s dilemma can, as we have seen, be avoided if we assume that agents have

multiple negotiation encounters and use a ‘tit for tat’ scheme for deciding when to be
concessionary or not. Such schemes are probably used, in fact, by many designers in
collaborative settings. The relative infrequency of major negotiations, the absence of

reputation databases, and high turnover in personnel may, however, sabotage the efficacy
of such strategies. It seems likely, in addition, that many engineers make some use of the
other approaches we described above, being adaptive or simply highly sparing in how

much they concede. These are, after all, apparently reasonable strategies. They do not,
however, have the desired result of fostering the discovery of more optimal overall
designs. Mediation, as we have seen, has the potential of resolving the prisoner’s

dilemma, and it in fact has an important place in current collaborative design practice.
Senior engineers, and in some cases teams of such engineers (sometimes called “change
boards”) are often called upon to mediate situations where the achievement of
satisfactory global utility appears to be threatened. Engineers with that level of

experience are, however, a scarce resource, so this tactic is typically reserved for only the
most serious problems.



In brief, it appears likely that current collaborative design practice, particularly for highly

innovative design, is prone to getting stuck in unnecessarily suboptimal solutions. We
will discuss possible solutions to these problems in the section “How We Can Help”
below.

Symmetric vs. Asymmetric Networks

Asymmetry Allows Non-Convergence: Symmetric networks are ones in which influences
between nodes are mutual (i.e. if node A influences node B by amount X then the reverse

is also true), while asymmetric networks do not have this property. Asymmetric networks
(if they have cycles in them; see below) add the complication of having dynamic
attractors, which means that the network does not converge on a single configuration of

node states but rather cycles indefinitely around a relatively small set of configurations.
Let us consider the simplest possible cyclic asymmetric network: the ‘odd loop’ (Figure
5):

+1

-1

A B

Figure 5. The simplest possible cyclic asymmetric network – an ‘odd loop’.

This network has two links: one where node B influences node A to have the same value,

and another where node A influences node B to have the opposite value. Imagine both
nodes have the initial value 1, and update each other in parallel. The states of the two
nodes will proceed as follows:

State Value of Node A Value of Node B
Initial state 1 1

State 1 1 -1

State 2 -1 -1

State 3 -1 1

State 4 1 1

After one time step (state 1) node A will cause node B to ‘flip’ to –1, and node B will

leave node A unchanged. After a second iteration (state 2) node A leaves node B
unchanged, but node B causes the value of node A to flip. If we trace this far enough we



find that the system returns to its initial state (State 4) and thus will repeat ad infinitum. If

we plot the state space that results we get the following simple dynamic attractor:

N
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Figure 6. The dynamic attractor for the odd loop.

More complicated asymmetric networks will produce dynamic attractors with more
complicated shapes, including ones where states are never exactly repeated, but the

upshot is the same: the system will not converge. One can always of course stop the
system at some arbitrary point along its trajectory, but there is no guarantee that the
design utility at that point will be better than that at any other point because the system,

unlike the symmetric case, does not necessarily progress monotonically towards higher
utility values. This can be understood in the following way. Every utility function can, in
principle, be ‘compiled’ into a (symmetric) network that will progress monotonically

towards higher utility values as long as the individual nodes perform local optimization.
The opposite, however, is not true. There are many networks (including most asymmetric
ones) that do not correspond to any well-formed utility function, so their sequences of

states clearly can not be viewed as progressing towards a utility optimum (Bar-Yam
1997).

If a network is acyclic  however (also known as a feed-forward network, wherein a node
is never able to directly or indirectly influence its own value), it has a well-defined utility
function and thus will not have a dynamic attractor.

Lessons: How does this apply in collaborative design settings? Traditional serialized
collaborative design is an example of an asymmetric feed-forward network, since the

influences all flow uni-directionally from the earlier product life cycle stages (e.g. design)
to later ones (e.g. manufacturing) with only weak feedback loops if any. In such contexts
the attractors should be static and convergence should always occur, given sufficient

time. In such settings we may not, however, expect particularly optimal designs. It is



typically very difficult, given the bounded rationality of human beings, for designers

earlier in the design life cycle to ensure that the designers later on in the life cycle will be
able to produce near-optimal solutions for their very different but highly dependent
problems. This is in fact the rational underlying the adoption of concurrent engineering

approaches. ‘Pure’ concurrent engineering, where all design disciplines are represented
on multi-functional design teams, encourage roughly symmetric influences between the
participants and thus can also be expected to have convergent dynamics with static

attractors. Current collaborative design practice, however, is a hybrid of these two
approaches, and thus is likely to have the combination of asymmetric influences and
influence loops that produces dynamic attractors and therefore non-convergent dynamics.

This, moreover, is a fundamental problem. As noted above, it is in principle
straightforward to compute the proper inter-node influences given a global utility

function. In design practice, however, we do not know the global utility function,
especially once we have reached the realm of detailed design. The space of possible
designs, and the cost of calculating their individual utility values, is simply too large. At

best the global utility function is revealed to us incrementally as we generate and
compare different candidate designs. The influence relationships between designers are,
as a result, invariably defined directly based on experience and our knowledge of design

decision dependencies. But such a heuristic approach can easily lead to the creation of
influence networks that do not instantiate a well-formed utility function, and thus display
dynamic attractors.

Dynamic attractors were found to not to have a significant effect on the dynamics of at
least some routine (linear) collaborative design contexts (Eppinger, Nukala et al. 1997),

but may prove more significant in innovative (non-linear) collaborative design. It may
help explain, for example, why it sometimes takes so many iterations to fully propagate
changes in complex designs (Klein 1994).

Subdivided Networks

Subdivision Can Speed Convergence: Another important property of networks is whether
or not they are sub-divided, i.e. whether they consist of sparsely interconnected ‘clumps’

of highly interconnected nodes, as for example in Figure 7:

Figure 7. An example of a subdivided network.



When a network is subdivided, node state changes can occur within a given clump with

only minor effects on the other clumps. This has the effect of allowing the network to
explore more states more rapidly. Rather than having to wait for an entire large network
to converge, we can rely instead on the much quicker convergence of a number of smaller

networks, each one exploring possibilities that can be placed in differing combinations
with the possibilities explored by the other sub-networks (Simon 1996).

Lessons: This effect is in fact widely exploited in design communities, where it is often
known as modularization. This involves intentionally creating subdivided networks by
dividing the design into subsystems with pre-defined standardized interfaces, so

subsystem changes can be made with few or any consequences for the design of the other
subsystems. The key to using this approach successfully is defining the design
decomposition such that the utility impact of the subsystem interdependencies on the

global utility is relatively low, because standardized interfaces rarely represent an optimal
way of satisfying these dependencies. In most commercial airplanes, for example, the
engine and wing subsystems are designed separately, taking advantage of standardized

engine mounts to allow the airplanes to use a range of different engines. This is almost
certainly not the optimal way of relating engines and wings, but it is good enough and
simplifies the design process considerably. If the engine-wing interdependencies were

crucial, for example if standard engine mounts had a drastically negative effect on the
airplane’s aerodynamics, then the design of these two subsystems would have to be
coupled much more closely in order to produce a satisfactory design.

Imprinting

Imprinting Captures Successful Influence Patterns: One common technique used to speed
network convergence is imprinting, wherein the network influences are modified when a

successful solution is found in order to facilitate quickly finding (similar) good solutions
next time. A common imprinting technique is reinforcement learning, wherein the links
representing influences that are satisfied in a successful final configuration of the network

are strengthened, and those representing violated influences weakened. The effect of this
is to create fewer but higher optima in the utility function, thereby increasing the
likelihood of hitting such optima next time.

Lessons: Imprinting is a crucial part of collaborative design. The configuration of
influences between design participants represents a kind of ‘social’ knowledge that is
generally maintained in an implicit and distributed way within design organizations, in

the form of individual designer’s heuristics about who should talk to whom when about
what. When this knowledge is lost, for example due to high personnel turnover in an
engineering organization, the ability of that organization to do complex design projects is



compromised. It should be noted, however, that imprinting reinforces the tendency we

have already noted for organizations in non-linear design regimes to stick to tried-and-
true designs, by virtue of making the previously-found optima more prominent in the
design utility function, and thus may be counter-indicated for challenges requiring highly

innovative designs.

How We Can Help?
What can we do to improve our ability to do innovative collaborative design? We will
briefly consider several possibilities suggested by the discussion above.

Information systems are increasingly becoming the medium by which design participants
interact, and this fact can be exploited to help monitor the influence relationships between
them. One could track the volume of design-related exchanges or (a more direct measure

of actual influence) the frequency with which design changes proposed by one participant
are accepted as is by other participants. This can be helpful in many ways. Highly
asymmetric influences could represent an early warning sign of non-convergent

dynamics. Detecting a low degree of influence by an important design concern, especially
one such as environmental impact that has traditionally been less valued, can help avoid
utility problems down the road. A record of the influence relationships in previous failed

and successful design projects can be used to help better manage future projects. This
will require being able to determine which influences were critical in these previous
efforts. If a late high-impact problem occurred in a subsystem that had a low influence in

the design process, for example, this would suggest that the relevant influence
relationships should be modified in the future. Incentive mechanisms can be put in place
that reward engineers not just for producing good subsystem designs, but also for

participating in what are believed to be productive patterns of mutual influence with other
designers. Note that this has the effect of making a critical class of normally implicit and
distributed knowledge more explicit, and therefore more amenable to being preserved

over time, as well as transferred between projects and even organizations.

Information systems can also potentially be used to help assess the degree to which the

design participants are engaged in routine (i.e. optimization-driven) vs innovative (i.e.
highly exploratory) design strategies. We could use such systems to estimate for example
the number and variance of design alternatives being considered by a given design
participant. This is important because, as we have seen, a premature commitment to a

routine design strategy that optimizes a given design alternative can cause the design
process to miss other alternatives with higher global optima. Tracking the degree of
innovative exploration can be used to fine-tune the use of innovation-enhancing

interventions such as incentives, competing design teams, introducing new design



participants, and so on. As with simulated annealing, it will probably make sense to

encourage more conceding and exploration early on in the design process, and gradually
transition to hill-climbing as time goes on.

The prisoner’s dilemma incentive structure that leads to suboptimal designs can be
addressed in at least two ways that are probably under-utilized in current practice. One is
by the introduction of reputation mechanisms. If we simply make information available

on which designers have a history of conceding sparingly, we are likely to find an
increase in concessionary behavior, and therefore improved design outcomes, even in the
absence of explicit (e.g. salary) incentives. Another possibility is the wider use of

mediators. Mediators in collaborative design contexts have traditionally been senior
engineers capable of dictating the content of a design outcome. Recent work on
negotiation algorithms suggests, however, that mediators can be effective by guiding the

design process, for example as we suggested above by occasionally having the agents
follow up on design options that one or both rejected, and by enforcing rough parity in
the number of mixed wins. Process-oriented mediation does not require the same depth of

domain expertise as content-oriented mediation, and it is therefore likely that designers
can be trained to provide that for each other, and that such mediation can become much
more widely available as a result.

Finally, information systems can be used to track the history of design alternatives
explored and thereby detect the design loops that indicate a non-convergent design

process.

Conclusions
Existing collaborative design approaches have yielded solid but incremental design
improvements, which has been acceptable because of the relatively slow pace of change
in requirements and technologies. Consider for example the last 30 years of development

in Boeing’s commercial aircraft. While many important advances have certainly been
made in such areas as engines, materials and avionics, the basic design concept has
changed relatively little (Figure 8):

Figure 8. The Boeing 737 (inaugurated 1965) and the Boeing 777 (1995)



Future radically innovative design challenges, such as high-performance commercial

transport, will probably require, however,  substantial changes in design processes:

Figure 9. The Boeing Sonic Cruiser (under development)

This paper has begun to identify what recent research on negotiation and complex

systems can offer in this regard. The key insights are that important properties of
collaborative design dynamics can be understood as reflecting two basic facts: (1)
collaborative design is a kind of distributed network, and (2) the agents in this network

are self-interested and respond to local incentives. This is powerful because this means
that our growing general understanding of networks and negotiation can be applied to
help us better understand and eventually better manage collaborative design regardless of

the domain (e.g. physical vs informational artifacts) and type of participants (e.g. human
vs software-based).

This insight leads to several others. Most prominent is the suggestion that we need to
fully embrace an influences- and incentives-centric perspective on how to manage
complex collaborative design processes.  It is certainly possible for design managers to

have a very direct effect on the content of design decisions during preliminary design,
when a relatively small number of high-level global utility driven decisions are made top-
down by a small number of players. But once the detailed design of a complex artifact

has been distributed to many players, the global utility impact of local design changes is
too difficult to assess, and design decisions are too voluminous and complex to be made
top-down, so the dominant drivers become local utility maximization plus fit between

these local design decisions. In this regime encouraging the proper influence relationships
and concession strategies becomes the primary tool available to design managers. If these
are defined inappropriately, we can end up with designs that take too long to create, do

not meet important requirements, and/or miss opportunities for significant utility gains
through more creative (far-ranging) exploration of the design space.
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