Gallium Vacancy and EL 2 in GaAs

In a recent Letter Baraff and Schlüter report interesting results on the gallium vacancy (V_{Ga}) in gallium arsenide and its potential relationship to the important EL 2 deep-level defect. In this Comment we report ab initio total-energy calculations which reinforce qualitative features of the tight-binding-interpolated ab initio calculations described in Ref. 1. We also present additional theoretical predictions for the experimental signature of V_{Ga}.

We have performed extensive calculations of the energy surface of V_{Ga} using pseudopotential density-functional theory in the supercell approximation. The supercell used contained 64 atoms. In Fig. 1 we show the results of our total-energy calculations as a function of displacement of one of the adjacent As atoms towards the vacancy site. Relaxation includes the breathing mode of the three neighboring As atoms, and, separately, of the three Ga neighbors of the moving As atom (some uncertainty remains near $R = 0$ because we did not include other Jahn-Teller distortions).

Despite some differences of our results from those of Ref. 1 (e.g., no secondary metastable minimum at $R = 0.3$ and different positions of defect levels crossing into the valence and conduction bands), several conclusions are possible. We find that positively charged V_{Ga} is metastable and the stable configuration consists of an intimate $As_{Ga}V_{As}$ pair. We find a barrier to motion to the ground state of 0.23 eV. It is tempting to identify this metastability with the persistent photoquenching observed for the EL 2 deep level as discussed in Ref. 1. Such a model would suggest that V_{Ga} is the EL 2 defect disguised as $As_{Ga}V_{As}$, and the metastable state is the usual V_{Ga} geometry. However, this correspondence proves to be illusory as we now show by describing the signature of the defect V_{Ga} including the possible transformation to $As_{Ga}V_{As}$.

The overall thermodynamic energy level diagram for this defect is highly unusual. The two configurations with very different electronic structures lead to stability of $(+++)$ ($As_{Ga}V_{As}$) for Fermi energies up to ~ 0.5 eV above the valence band. Beyond ~ 0.7 eV the $(-,-)$ (V_{Ga}) is stable. Our results, combined with the electronic structure of Ref. 1 for highly charged states, yields the transitions $(+++/\rightarrow -)$, $(-/-\rightarrow -)$ at 0.5, 0.7 eV (remarkable negative effective correlation energy).

This thermodynamic level structure will only be relevant for experiments when the necessary structural transformations are possible. For room-temperature n-type material the equilibrating transition $(+++)$ ($As_{Ga}V_{As}$) $(-,-)$ (V_{Ga}) by successive electron capture involves a structural barrier of 0.05 \pm 0.2 eV along the (0) energy surface or at most 0.6 \pm 0.2 eV along the (+) energy surface. This implies a transition time of at most 10^{-2} sec for equilibration. Thus, in room-temperature material this defect should be completely equilibrated.

With this result, experiments apparently rule out this defect's yielding the dominant deep level, since common experimental procedures rule out a strongly accepting dominant midgap state. In a depletion region of reverse-biased diodes used for photoquenching experiments the state of this defect will be determined by the sequence of temperature and illumination treatments.

To identify V_{Ga} we suggest the following experimental signatures. First, to enhance the concentration of V_{Ga} over As_{Ga}, or its complexes, quenching might be used. The strongly amphoteric nature of this defect having donor and acceptor optical transitions overlapping within the gap is then likely to be a distinctive feature. We are also currently studying other configurations of V_{Ga} to see if they affect its properties.

This work was supported in part by National Science Foundation Grant No. DMR 84-18715. We thank E. Weber, J. Lagowsky, and J.-M. Spaeth for helpful discussions. One of us (Y.B.) is a Bantrell Postdoctoral Fellow.

Y. Bar-Yam and J. D. Joannopoulos
Department of Physics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Received 18 December 1985
PACS numbers: 71.55.Fr, 71.45.Nt

3A. Mircea, A. Mitonneau, L. Hollan, and A. Brière, Appl. Phys. 11, 153 (1976); E. Weber and J. Lagowsky, private communication.