NECSI Resources

 International Conference on Complex Systems (ICCS2007)

Cell Sensing and Signaling

Andre Levchenko
Dept. of Biomedical Engineering, Johns Hopkins University

     Full text: Not available
     Last modified: October 23, 2007

Bacterial cells form colonies with complex organization (aka biofilms), particularly in response to hostile environmental conditions. Recent studies have shown that biofilm development occurs when bacterial cells seek out small cavities and populate them at high densities. However, bacteria in cavities may suffer from poor nutrient supply or waste removal, or disorganized expansion leading to blockage of cell escape. In this study, we observed Escherichia coli in a microfluidic device that allows direct observation of the growth and development of cell colonies in microchambers of different shapes and sizes through multiple generations. Combining this experimentation with computational analysis of colony growth and expansion, we characterize a process of colony self-organization that results in a high degree of correlation between the directions of cell orientation and growth of collective cell movement. We also find that this self-organization can significantly facilitate efficient escape of cells from the confines of cavities where they reside, while improving the access of nutrients into the colony interior. Finally, we suggest that the aspect ratio of the shape of E. coli and other similar bacteria might be generally subject to a constraint related to colony self-organization.

Maintained by NECSI Webmaster Copyright © 2000-2007 New England Complex Systems Institute. All rights reserved.