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The first, fully non linear, mean field theory of relativistic gravitation has been devel-
oped in 2004. The theory makes the striking prediction that averaging or coarse graining a
gravitational field changes the matter content of space-time. A review of the general theory
is presented, together with new calculations that highlight this effect on black holes of the
Reisner-Nordström (RN) family. Explicit expressions for the equation of state and for the
energy and charge densities of the apparent matter surrounding the coarse grained black
holes are given. In particular, the Schwarzschild black hole, which is a vacuum solution of
Einstein field equations, is shown to appear after coarse graining as surrounded by an ap-
parent matter whose equation of state strongly resembles the equation of state commonly
postulated for cosmological dark energy. Thermodynamical aspects are also investigated.
Taken together, these new results suggest that matter and charge may be properties of the
space-time which only emerge after a certain coarse graining has been performed.

1 Introduction

Developing a mean field theory for general relativity has long been the subject
of active research ([9, 13, 10, 11, 20, 1, 2]). This problem is of undeniable theo-
retical interest, but it is also of real practical importance because finite precision
effects in astrophysical observations of relativistic objects and in observational



cosmology can only be modeled properly through a mean field theory of relativis-
tic gravitation ([8]).

The last three years have witnessed the construction of the first general mean
field theory for Einstein gravitation ([5, 6]). The theory makes the striking pre-
diction that averaging or coarse graining a gravitational field changes the matter
content of space-time. In particular, the net ‘large scale’ effect of the averaged
upon, ‘small scale’ gravitational degrees is to contribute an apparent ‘large scale’
matter which self consistently generates the coarse grained gravitational field.
This matter is charged if the gravitational field is coupled to an electromagnetic
field. These remarkable predictions raise the intriguing possibility that matter
may simply be an emergent property of space time.

We first introduce the general theory mean field theory. We then present coarse
grainings of both the Schwarschild and the extreme Reisner-Nordström black
holes. We derive explicit expressions for the equation of state and for the energy
and charge densities of the apparent matter surrounding the coarse grained black
holes. In particular, the Schwarzschild black hole, which is a vacuum solution of
Einstein field equations, is shown to appear after coarse graining as surrounded
by an apparent matter whose equation of state strongly resembles the equation
of state commonly postulated for cosmological dark energy. We also investigate
thermodynamical aspects and prove that the envisaged coarse graining transforms
the extreme RN black hole, which has a vanishing temperature, into a black hole
of non vanishing temperature.

2 A mean field theory for general relativity

Let M be a fixed ‘base’ manifold and let Ω be an arbitrary probability space.
Let g(ω) be an ω-dependent Lorentzian metric defined on M; let also A(ω) be
an ω-dependent 4-potential, with associated current j(ω). Each triplet S(ω) =
(M, g(ω), A(ω)) represents a physical space-time; we denote by Σ the collec-
tion of all these space-times. Each member S(ω) of Σ is naturally equipped
with the Levi-Civita connection Γ(ω) of the metric g(ω) [19]; to S(ω) is also
associated a stress-energy tensor T (ω) related to the metric g(ω), the connection
Γ(ω) and A(ω) through Einstein equation; we write T (ω) = T(A(ω),g(ω)) + Tm(ω),
where T(A(ω),g(ω)) represents the stress-energy tensor generated by A(ω) in g(ω)
and Tm(ω) represents the stress-energy of other matter fields.

It has been shown in ([5]) that the collection Σ of space-times can be used
to define a single, mean or coarse grained space-time S̄ = (M, ḡ, Ā) where the
metric ḡ and the potential Ā are the respective averages of the metrics g(ω) and
of the potentials A(ω) over ω; thus, for all points P ofM, ḡ(P) = 〈g(P, ω)〉 and
Ā(P) = 〈A(P, ω)〉, where the brackets on the right-hand side indicate an average



over the probability space Ω.

The connection of the mean space-time S̄ is simply the Levi-Civita connec-
tion associated to the metric ḡ and will be conveniently called the mean or coarse
grained connection. Since the relations linking the coordinate basis components
gµν of an arbitrary metric g to the Christoffel symbols Γαµν of its Levi-Civita
connection are non-linear, the Christoffel symbols of the mean connection are
not identical to the averages of the Christoffel symbols associated to the various
space-times S(ω).

The metric ḡ and its Levi-Civita connection Γ̄ define an Einstein tensor Ē
for the coarse grained space-time S̄. This tensor defines, via Einstein equa-
tion, the stress-energy tensor T̄ for S̄. Because Einstein equation is non lin-
ear in both the metric and the electromagnetic potential, T̄ αβ is generally differ-
ent from

〈
T
αβ
m (ω)

〉
+ TĀ,ḡ. The additional, generally non vanishing tensor field

∆T = T̄ − 〈Tm(ω)〉 − TĀ,ḡ, can be interpreted as the stress-energy tensor of an
‘apparent matter’. This apparent matter simply describes the cumulative effects
of the averaged upon (small scale) fluctuations of the gravitational and electro-
magnetic fields on the (large scale) behaviour of the coarse grained gravitational
field. In particular, the vanishing of T (ω) for all ω does not necessarily imply the
vanishing of T̄ . The mean stress-energy tensor T̄ can therefore be non vanishing
in regions where the unaveraged stress-energy tensor actually vanishes.

The Maxwell equation relating the electromagnetic potential to the electro-
magnetic current also couples the electromagnetic and the gravitational field non
linearly; the mean current j̄ associated to Ā in ḡ does not therefore coincide with
the average < j(ω) >. In particular, a region of space-time where j(ω) vanishes
for all ω is generally endowed with a non vanishing mean current j̄.

Let us finally mention that the averaging scheme just presented is the only one
which ensures that the motions in a mean field can actually be interpreted, at least
locally, as the averages of ‘real’ unaveraged motions. This very important point
is fully developed in ([6]).

3 Example 1: Coarse graining a Schwarzschild
black hole

3.1 Determination of the coarse grained space-time

We consider a collection of space-times ([7, 4]) which describes a single
Schwarzschild black hole observed with finite precision measurements of the
three spatial Kerr-Schild coordinates. More precisely, this collection is defined as



an ensemble of space-times S(ω), each member of the ensemble being equipped
with the metric g(t, r,ω) given by:

ds2
ω = dt2 − dr2 −

2M
|r − ω|

(
dt −

(r − ω).dr
|r − ω|

)2

(1)

The parameter M represents the mass of the black hole and r stands for the set
of three ‘spatial’ coordinates x, y, z. The set Ω of possible values for ω is taken
to be the Euclidean 3-ball of radius a: Ω = {ω ∈ R3;ω2 6 a2}. The probability
measure on Ω is defined by its uniform density p(ω) = 3/(4πa3) with respect
to the Lebesgue measure d3ω and all 3-D scalar products and norms in (1) are
Euclidean. The electromagnetic field vanishes identically in all space-times S(ω).
The coarse graining is caracterized by the dimensionless parameter x = a/M.

The exact expression of the mean metric ḡ corresponding to this collection
can be obtained for every a < r. The mean metric expressed in Kerr-Schild
coordinates is given by:

〈
ds2

〉
=

(
1 −

2M
r

)
dt2 −

(
2M

r
−

6a2M
5r3

) (r
r
· dr

)2
−

(
1 +

2a2M
5r3

)
dr2

+

[
−

3M
2r
−

3Mr
2a2 +

3M
4a3r2

(
a2 − r2

)2
ln

( r + a
r − a

)] r
r
· drdt.

(2)

One can construct a new set of coordinates (τ, ρ, θ, φ) (conveniently called
Schwarzschild coordinates) which makes the static and spherically symmetric
character of the mean space-time apparent. The metric then takes the form:〈

ds2
〉
= F(ρ)dτ2 −G(ρ)dρ2 − ρ2dΓ2 (3)

where dΓ2 stands for the usual volume element on the unit sphere S 2. The exact
expressions of both F(ρ) and G(ρ) need not be reproduced here. We mention
however that ρH = 2M

√
1 + x2/20, which corresponds to r = 2M, is a first order

pole of G and a zero of F; it is also the first encountered singularity of G when
coming form infinity in ρ-space. The coarse grained space-time is thus a black
hole of horizon radius ρH .

3.2 Energetics of the coarse grained black hole

Stress-energy tensor The exact expressions of the Schwarzschild components
of the mean stress-energy tensor are too complicated to warrant reproduction here.
We just present the approximate expressions of these components, which are valid



when a � r:

8π T̄ 0
0 = ε = −

6a2M2

5ρ6 ; 8π T̄ 1
1 = −p1 = −

6a2M2

5ρ6 ;

8π T̄ 2
2 = −p2 =

12a2M2

5ρ6 ; 8π T̄ 3
3 = −p3 =

12a2M2

5ρ6 . (4)

This shows that the coarse graining procedure endows the original vacuum space-
time with a non vanishing stress-energy tensor T̄ . This tensor describes how
the averaged upon (small scale) degrees of freedom of the Schwarzschild grav-
itational field can be viewed as an apparent matter which acts as the effective
‘source’ of the coarse grained (large scale) field. The apparent matter is char-
acterized by a negative energy density and an anisotropic pressure tensor. Note
that all energy conditions (i.e. the weak, strong and dominant energy conditions
([19])) are violated by the mean stress energy tensor T̄ . Finally, by taking the trace
of Einstein’s equation, the scalar curvature R̄ of the mean space-time outside the
horizon can be obtained directly from the exact components of T̄ ; one finds, at
second order in a/ρ:

R̄ = −8πT̄ µµ = −
12a2M2

5ρ6 . (5)

The coarse graining thus endows the space-time with a negative scalar curvature.
This inevitably evokes the recent observations ([18]) of a positive, non-vanishing
cosmological constant Λ, which also endows vacuum regions of space-time with
a negative scalar curvature ([15]) RΛ = −4Λ. The similarity and differences
between the coarse grained space-time constructed here and space-times of cos-
mological interest are further explored in [7].

Mass and temperature of the coarse grained black hole We have just seen
that the coarse graining changes the repartition of energy in space-time. A stan-
dard asymptotic analysis at spatial or null infinity shows that the coarse grained
space-time described by (3) is asymptotically flat and that its mass is identical to
M, the mass of the unaveraged Schwarzschild black hole. This result is true for
all values of a (including those superior to 2M).

The temperature T (x,M) of the coarse grained black hole can be obtained by
studying the natural topology of the associated Euclidean space time ([19]). One
obtains

T (x,M) = −
1

12πM
x3

−x
(
1 + x2

4

)
+

(
1 − x2

4

)2
ln

(
1+x/2
1−x/2

) . (6)

One finds that T (x,M) ≈
1

8πM

(
1 +

x2

20

)
at order two in x; this confirms

that T (0,M) coincides with the Hawking temperature 1/8πM ([19]) of the
Schwarzschild black hole.



4 Example 2: Coarse graining of an extreme
Reisner-Nordström black hole

Type of coarse graining Extreme black holes are thermodynamically particu-
larly interesting because they have a vanishing temperature. One can thus wonder
if a coarse graining similar to the one applied above to the Schwarzschild black
hole would not transform the extreme black hole into a black hole of finite tem-
perature. The answer is negative because the coarse grained space-time turns out
not to be a black hole. There exist however a simple complex generalization of the
above coarse graining which does transform the real extreme Reisner-Nordström
black hole into a real black hole of non vanishing temperature. Note that complex
space-times have been considered in a wide variety of context, which range from
spinor and twistor theory [16] to black hole physics [3] and string theory [17]; the
natural occurence of complex space-times in the present problem therefore comes
as no surprise.

Consider a collection of complex space-times S(ω) equipped with the metric

ds2
ω = dt2 − dr2 − hω(r)

(
dt −

(r − iω).dr
R(r,ω)

)2

, (7)

with R(r,ω) =
(
r2 − ω2 − 2 i r.ω

)1/2
, and hω(r) = 1 −

(
1 − M

R(r,ω)

)2
. The four

space-time coordinates t and r are still assumed real and the probability space
Ω to which the parameter ω belongs is the same as in Section 3. The principal
determination is retained in the definition of R, with cut along the positive imag-
inary axis. Note that the metric corresponding to ω = 0 is the real extreme RN
metric in Kerr-Schild coordinates. The only matter outside each black hole is an
electromagnetic field of 4-potential

At(ω) = −
M
R

Ax(ω) =
M
R2 hω(r) x (8)

Ay(ω) =
M
R2 hω(r) y Az(ω) =

M
R2 hω(r) z. (9)

The associated current j(ω) vanishes identically but the total charge of each space-
time is Q = M.

One can obtain an explicit expression of the metric ḡ of the complex coarse
grained space-time S̄ for all r > a. This metric is real and can be put into the
manifestly static and spherically symmetric form (3). A standard analysis then
shows that the coarse grained space-time is a real black hole; the horizon radius

ρH(x,M) is given at second order in x by ρH(x,M) ' M
(
1 +

x
√

5
−

3x2

√
10

)
.



Mass and charge repartition It is straightforward to evaluate the potential
Ā =< A(ω) > of S̄ and the corresponding stress-energy tensor TĀ,ḡ. One can
also evaluate the total stress-energy tensor T̄ of S̄. The difference ∆T̄ yields the
stress-energy tensor of the apparent matter describing the net large scale effect of
the averaged upon, small scale degrees of freedom. One finds, at second order in
a/ρ:

8π (∆T̄ )0
0 = a2

(
4M3

5ρ7 −
4M4

5ρ8

)
; 8π (∆T̄ )1

1 = a2
(

4M2

5ρ6 −
4M3

5ρ7

)
;

8π (∆T̄ )2
2 = a2

(
−

8M2

5ρ6 +
24M3

5ρ7 −
2M4

ρ8

)
; 8π (∆T̄ )3

3 = 8π (∆T̄ )2
2. (10)

However, a direct calculation shows that the total mass is unaltered by the coarse
graining.

The 4-current j̄ in S̄ can be evaluated from Ā and ḡ. One finds that j̄ = 0 but

j̄0 =
a2M3 (2 − 3 ρ/M)

5 π ρ7 at second order in a/ρ. A direct computation shows that

the total charge of S̄ is equal to Q = M, the charge of the original extreme black
hole. Note however that the charge density j̄0 and Q are of opposite signs outside
the horizon.

Temperature The temperature T (x,M) of the coarse grained black hole can
be obtained, as usual, by considering the Euclidean space-time associated to
the region outside the horizon [19]. One obtains, at second order in x, that

T (x,M) '
x

2
√

5πM
−

x2

5 πM
. The coarse graining over complex space-time

degrees of freedom has thus transformed the extreme real RN black hole of van-
ishing temperature into a real black hole of non vanishing temperature.
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