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Some nongrowing networks can be investigated by using an urn model. We consider
an urn model with a preference concept, i.e., “the rich get richer.” After explaining
the relationship between the urn model and a corresponding network model, we show
numerically and analytically that quenched disorder states in the model play an im-
portant role to generate fat-tailed distributions; when each urn (node) has the same
ability for obtaining balls (edges), the fat-tailed occupation (degree) distribution does
not occur in the urn (network) model; when the ability of urns (nodes) are different
from each other, the occupation (degree) distribution shows fat-tailed behavior.

1.1 Introduction

In recent years, complex networks have attracted a lot of attentions in statistical
physics [1]. One of the important properties of complex networks is scale-free
property; a network with the scale-free property is characterized by its fat-tailed
degree distribution, P (k) ∼ k−γ , where γ is a characteristic exponent. It has
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been revealed that many real-world networks, such as Internet, World Wide
Web, metabolic networks, social networks, have the scale-free property.

Numerous models have been proposed in order to explain the emergence of
the scale-free property, and most of these models have two important concepts,
i.e., the concepts of preference and growth [2]. The “preference” concept indi-
cates the fact that “the rich get richer,” and it seems reasonable for explaining
various phenomena in real world. However, it is still an open question that
the “growth” concept is suitable for all kind of real networks, so that some
researchers have proposed nongrowing model for complex networks. For exam-
ple, threshold models have succeeded in generating scale-free networks without
growth. [7, 5, 12]. The threshold models implicitly have the preference concept,
and an important point of the threshold models is existence of randomness; each
node has a different parameter for connecting edges to the other nodes. There-
fore, it is considered that the preference concept and the randomness concept
might be important to generate the fat-tailed degree distribution.

The threshold models are not dynamical; we connect each pair of nodes by
using a certain rule, and the network has no rewiring process. Nongrowing
models with dynamical rewiring process have also been proposed, and it has
been shown that the preference concept alone dose not give networks with the
fat-tailed degree distribution [8, 14, 15]. In addition, it has been revealed that
the randomness concept, i.e., the quenched disorder for the ability of obtaining
edges, might be essential in order to generate the fat-tailed behavior [14, 15].

In the present paper, we investigate the importance of the preference and
randomness (quenched disorder) concepts for generating fat-tailed behavior. In
order to perform an analytical treatment, we propose an urn model. The re-
lationship between a nongrowing network model and an urn model has been
proposed in our previous paper [16], and then we here review the discussion. In
addition, we present further numerical experiments and discussions to ensure our
proposition, i.e., “the preference concept and another additional concept would
be important to generate fat-tailed behavior.”

1.2 Network Model and Urn Model

1.2.1 Nongrowing network model

First, we introduce a nongrowing network model with preferential rewiring pro-
cesses.

(i) Set N nodes, and connect randomly these nodes with M edges; then, the
initial network is an Erdös-Rényi network [10]. In addition, assign a fitness
parameter βi to each node i. Each fitness parameter represents an ability
of the node for obtaining edges, and the value of the fitness parameters
are chosen by using a fitness distribution φ(β).

(ii) Select an edge lij at random.
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Figure 1.1: Examples of generated networks. Each network consists of N = 100
nodes, and the average degree is 〈k〉 = 4.0 for both cases. We performed 100N rewiring
processes. (a) The case with the fitness distribution φ(β) = δ(β); (b) φ(β) = 1 (0 ≤
β ≤ 1).

(iii) Replace the edge lij by an edge lim, where node m is chosen randomly
with the following probability:

Πm ∝ (km + 1)βm , (1.1)

where km is the degree of node m.

(iv) Repeat the procedures (ii) and (iii) until the system reaches an equilibrium
state.

The examples of generated networks are shown in Fig. 1.1. When the fitness
distribution is φ(β) = δ(β), the probability Πm is independent of each degree;
then, a node to be attached to the rewiring edge is selected uniformly random.
Hence, the generated network is an Erdös-Rényi network (Fig. 1.1(a)). On the
other hands, in the case of the uniform fitness distribution, i.e., φ(β) = 1 (0 ≤
β ≤ 1), there are many isolated nodes, and an giant cluster exists (Fig. 1.1(b)).
We note that the giant cluster has a fat-tailed degree distribution, as shown in
the following sections.

1.2.2 Relationship between network models and urn mod-
els

In this subsection, we show a relationship between network models and urn mod-
els. Urn models have been used in order to explain various physical phenomena
[4, 6, 9, 11, 18]. The urn model consists of urns and balls which are distributed
among urns. There is a dynamics, so-called “ball-box” dynamics; we select a
ball at random, and transfer the ball to the other urn selected by a certain rule1.

Figure 1.2 shows a dynamics of the nongrowing network model and that of the
corresponding urn model. Note that we can consider the degree of each node in

1There are a different dynamics, so-called “box-box” dynamics. In statistical physics, the
ball-box dynamics corresponds to the classical system, and the box-box dynamics can be
considered as the quantum one.



4 Fat-tailed degree distributions generated by quenched disorder

1 2 3 4 5 6

...

Randomly

chosen ball

Randomly

chosen edge1

2

3

4

56

Preferentially

chosen node

1

2

3

4

56

1 2 3 4 5 6

...

Preferentially

chosen urn

Figure 1.2: (upper) The nongworing network model with the preferential rewiring
process. (bottom) A corresponding urn model. The number of edges connected to a
node corresponds to that of balls within an urn. Therefore, in order to investigate the
degree distribution of the network model, we can use the occupation distribution of
the urn model.

the network model as the number of balls within each urn in the corresponding
urn model. For instance, node 2 has four edges and lose an edge after the
rewiring process; urn 2 has four balls and lose a ball after the ball-transfer
process. Therefore, we can use the urn model in order to investigate the degree
distribution of the network models; the occupation distribution of the urn model
corresponds to the degree distribution of the network model.

The reason which we introduce the urn model is as follows; it is easy to
analyze the urn models because the partition function is given by a factorized
form [11]. Although we can construct the master equation for calculating the
degree distribution using the transition rate Πm (Eq. 1.1), it is difficult to solve
the master equation for the above nongrowing network model because of the
quenched disorder. On the other hands, occupation distributions of the urn
models are relatively easily calculated by using the partition function, even in
the case with quenched disorder; due to the existence of the quenched disorder,
the analytical treatment for the urn model become a little complicated, and
then it is needed to use the replica method [13] for the analysis. Hence, the urn
models can be useful tools for analyzing network models.

1.2.3 Preferential urn model

In this subsection, we construct the urn model corresponding to the nongrowing
network model described above. The urn model has the preference concept, i.e.,
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“the rich get richer,” so that we call the model the preferential urn model.
The urn model consists of M balls distributed among N urns2. We denote

the density of the system as ρ = M/N , and the number of balls within urn i as
ni. Hence,

∑N
i=1 ni = M .

We here define the energy of each urn as E(ni) = − ln(ni!); it is clear that
each urn tends to get more and more balls because an urn is stable when the
urn obtains a large number of balls. The unnormalized Boltzmann weight is
written by pni

= (ni)βi , where βi is an inverse local temperature of urn i and
corresponds to the fitness parameter in the nongrowing network model. Using
the heat-bath rule, the transition rate Wni→ni+1 from the state ni to ni + 1 is
written as Wni→ni+1 ∝ pni+1

pni
= (ni + 1)βi [11]. Therefore, the preferential urn

model has the same transition rate of the nongrowing network model.
The construction of the preferential urn model is as follows:

(i) Set N urns and M balls which is distributed at random. In addition, assign
each inverse local temperature βi to each urn i by using a distribution φ(β).

(ii) Choose a ball at random.

(iii) Transfer the chosen ball to an urn selected by using the transition rate
Wni→ni+1.

(iv) Repeat the procedures (ii) and (iii) until the system reaches an equilibrium
state.

1.3 Analytical and Numerical Results

1.3.1 Results for the case without quenched disorder

When there are no quenched disorder, i.e., the distribution of the inverse local
temperatures, φ(β), has a delta-function form, the occupation distribution has
an exponential decay [16, 17]. For example, we obtain a Poisson distribution
analytically as the occupation distribution for the case φ(β) = δ(β).

1.3.2 Analytical results for the uniform quenched disorder

For quenched disordered cases, the occupation distribution has a fat-tailed be-
havior. When the fitness distribution φ(β) is uniformly random, i.e., φ(β) = 1
for 0 ≤ β ≤ 1, we can obtain the analytical representation of the occupation dis-
tribution. Here, we only show the analytical results; for the details, see Ref. [17].

For the uniform quenched disordered case, the equilibrium occupation dis-
tribution is written as

P (k) =
∫ 1

0

(k!)β−1zk
s∑∞

m=0(m!)β−1zms
dβ, (1.2)

2Note that one edge in the network model corresponds to two balls in the urn model.
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Figure 1.3: The occupation distributions in the case with N = 1000. The number
of ball-transfer process is 500N times, and the distribution of the inverse local tem-
peratures is the uniform one, i.e., φ(β) = 1 (0 ≤ β ≤ 1). The numerical results for
the density ρ = 1.0 are shown by squares, and those for ρ = 4.0 by filled circles. The
solid lines correspond to Eq. (1.2) for respective cases. The data are averaged over 20
different realizations.

where zs is determined by solving the following equation:

ρ =
zs

[
1 +

∑∞
m=2

{
1

ln m!

(
1− 1

m!

)}
mzm−1

s
]

1 + zs +
∑∞

m=2

{
1

ln m!

(
1− 1

m!

)}
zms

. (1.3)

When ρ À 1, zs is approximately equal to 1, so that the approximate form for
the equilibrium occupation distribution in large k region is obtained as

P (k) ∼ k−2 1
(ln k)2

. (1.4)

Therefore, the equilibrium occupation distribution follows a generalized power
law with a squared inverse logarithmic correction. Note that the approximate
behavior is similar to the Parato distribution.

The analytical and numerical results are shown in Fig. 1.3. The analytical
results give good agreement with the numerical ones.

1.3.3 Numerical results for other quenched disordered
cases

For the case in which the distribution of the inverse local temperatures, φ(β),
is not uniform, we show only numerical results; analytical treatments for these
cases are similar to that of the uniform quenched disordered case. Here, we
consider the distribution φ(β) characterized by a parameter α; φ(β) = (α+1)(1−
β)α (0 ≤ β ≤ 1). For α = 0, we obtain the uniform distribution explained in
the previous subsection. Figure 1.4 shows the occupation distributions obtained
numerically. For the occupation distribution in the case with α = 1.0, we obtain
the power-law form with the exponents −2.98± 0.06; for α = 4.0, the exponents
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Figure 1.4: The occupation distribution in the case with N = 1000 and 500N ball-
transfer processes. The distribution of the inverse local temperatures is given the form
of φ(β) = (α + 1)(1 − β)α. Numerical results in the cases with α = 1.0 and α = 4.0
are shown. The density of balls is ρ = 4.0 for both cases. The numerical results for
α = 1.0 are shown by squares, and those for α = 4.0 by filled circles. The solid line
corresponds to P (k) ∼ k−2.98, and the dashed line indicates P (k) ∼ k−3.65.

−3.65± 0.04. Those numerical results show that the quenched disorder for the
inverse local temperatures β is important to generate the fat-tailed behavior.

1.4 Concluding Remarks

In summary, we show the relationship between network models and urn models;
the degree distribution of some nongrowing networks can be investigated by
using urn models. Furthermore, using the analytical treatments and numerical
experiments, we show that the fat-tailed behavior occurs due to the following
two concepts; the preference concept and the quenched disorder concerning the
ability for obtaining edges (balls). Therefore, we consider that the preference
concept and another additional concept (enhancing the preference) are needed to
generate the fat-tailed behavior. Furthermore, the growth concept may play the
same role of randomness. Unified analysis of the mechanisms for the fat-tailed
behavior should be needed in future works.
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