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In this paper, we explore use of evolutionary game theory (EGT) [5] to model the
dynamics of adaptive opponent strategies for large population of players and strategies.
In particular, we explore effects of information propagation through social networks in
Evolutionary Games. The key underlying phenomenon that the information diffusion
aims to capture is that the experiences of acquaintances can also be leveraged to speed
up learning in the agent society. We present experimental results from agent-based
simulations that show the impact of information diffusion through social networks on
the player strategies of an evolutionary game.

1 Introduction

We use evolutionary game theory (EGT) [5] to model the dynamics of adaptive
opponent strategies for large population of players. Previous EGT work has
produced interesting, and sometimes counter-intuitive results [2].

In our model, at each stage of the game, boundedly rational players observe
the strategies and payoffs of a subset of others and use this information to choose
their strategies for the next stage of the interaction. Building on EGT, we in-
troduce a model of interaction where the basic stage game is able to change
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depending on the global state of the population (state here means the strategies
chosen by the players). More precisely, each player has 2 strategies available
(cooperate C and defect D) and the payoffs are resampled from a fixed distrib-
ution when the proportion of the players playing C crosses a certain threshold.
This feature requires long-term reasoning by the players that is not needed in
the standard EGT setting. A possible example of a similar real-world situation
is a power struggle between different groups, such as parties in parliament. The
payoffs are kept constant while most of the players cooperate (support the sta-
tus quo), but when enough players are unhappy and choose to defect, the power
balance breaks and radically different one may emerge afterwards.

Similar to [3], we investigate the spatial aspect of the interaction. In our
model, the players are connected into a social network, through which the re-
wards are propagated. Thus the players can benefit (or suffer) indirectly de-
pending on how well off their friends in the network are. We show empirically
that the connectivity pattern of the network, as well as the amount of informa-
tion available to the players, have significant influence on the outcome of the
interaction.

2 The game

We consider a finite population X of players. At each stage all the players are
randomly matched in triples to play the following game. Note that each player
participates in every stage. Each player has 2 strategies available: cooperate (C)
and defect (D) (one can interpret these choices as participating in democratic
process and resorting to terrorism correspondingly). The payoff pi(k) of the
stage k game to player xi is

0 opponents play D 1 or 2 opponents play D

xi’s strategy cci cd1

dc dd

where cci > dc > dd > cd. Note that the payoff matrices for different players
may only differ in the value of cci. All the other payoffs are constant across the
population.

Denote SC(k) the proportion of the population that cooperated during stage
k:

SC(k) =
number of players that played C during stage k

|X| ,

Before the start of the first stage, cci are sampled uniformly from an interval
[CCmin, CCmax]. If during stage k∗ the series SC(k) crosses a fixed threshold2

1Here is a simple rule for distinguishing between these 4 variables: the first letter corre-
sponds to xi’s strategy, the second letter is c if both of the xi’s opponents play C and d
otherwise. For example, cd is the payoff of playing C given that at least one of the opponents
plays D.

2See the end of this section for the interpretation of this threshold.
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Figure 1: An example trace of the individual run of the system. x-axis is the stage
number (“’time step”), y-axis is the proportion SC of the population playing C. The
level of threshold T is also plotted for reference.

T ∈ (0, 1) from below, i.e.

SC(k∗ − 1) < T and SC(k∗) > T,

then all cci are resampled. Otherwise they stay the same as for previous stage.
For example, in an individual run plotted in Fig. 1 the values of cci would be
resampled only at point B.

One can interpret the above interaction as a power struggle: if the proportion
of players supporting status quo (i.e. cooperating) is high enough, the payoffs
for each individual player do not change. When enough players defect, the
system “falls into chaos” and after it emerges back from this state, a new power
balance is formed and the payoffs change correspondingly. Threshold T in this
interpretation is the minimum number of cooperators sufficient to sustain the
status quo.

2.1 Impact of social networks

A social network for finite population X is an undirected graph < X, E >. Two
players xi and xj are neighbors in the network if and only if (xi, xj) ∈ E. We
investigate the effect of reward sharing in social networks. After each stage k
every player xi obtains in addition to its own payoff pi a shared payoff psi:

psi(k) = α
∑

xj∈neighbors(xi)

pj(k),

where α ∈ [0, 1] is a parameter of the system. Notice that this does not incur
payoff redistribution: the shared payoff is not subtracted from payoffs of the
players that cause it. One can interpret this phenomenon as players being more
happy when their friends are happy.
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3 Player reasoning

3.1 Information available to players

Before describing the player reasoning algorithm one has to define what informa-
tion is available to the player, i.e. define an observation model. We assume that
the players are aware of the overall behavior of the game, but may not be aware
of the true values of parameters, such as the proportion SC(k) of the population
that played C at stage k. The players only observe the actions of their opponents
for the given stage, as opposed to observing the whole population. Therefore,
the observations available to xi after stage k are its payoff pi(k), shared payoff
psi(k), and proportion SCobs

i (k + 1) ∈ {0, 0.5, 1} of its direct opponents playing
democracy during the kth stage.

3.2 The reasoning algorithm

It is easy to see that for any triple of players, a single-stage game has 2 Nash equi-
libria in pure strategies: everybody cooperating and everybody defecting. The
cooperative equilibrium Pareto-dominates the “all-defect” equilibrium. There-
fore, if the “all-cooperate” payoffs cci were always held constant across the stages,
one would expect a population of rational players to always play C. However,
the payoffs are resampled once the proportion of players playing C drops below
T and then grows above T again. This provides an incentive, for the players
which happened to receive relatively low values of cci, to play D for some period
of time in order to try and cause the resampling of payoffs. A natural way for
a player to choose a strategy for the next stage is to compare the expected fu-
ture gain from resampled payoffs with the expense of trying to bring about the
resampling.

Let SCi(k) be xi’s belief about the value of SC(k). Then xi always plays
C if SCi(k) < T . Otherwise it computes the expected gain E(gaini) of playing
D under the assumption that it will eventually result in payoff resampling. In
order to compute this expectation, xi needs the expected number of stages before
resampling. Denote it TTRi (xi’s estimate of time-to-resampling). In Fig. 1 at
stage 0 this is an estimate of time until point B. A player also needs the expected
time from the resampling until SC(k) drops below T again. This is the period
when xi will be able to benefit from the new payoffs. It is denoted TSi (time-
of-stability). In Fig. 1 this corresponds to time between B and C. Denote
di ∈ {0, 1, 2} the number of xi’s opponents during single stage that play D.
Then a simple approximation of E(gaini) that we used in the agent reasoning
algorithm is

E(gaini) ≈ TTRi(E(payoffi(D))−E(payoffi(C)))+TSi(E(ccnew
i )− (cci + psi))

where

E(payoffi(D)) = P (di = 0)dc + P (di > 0)dd

E(payoffi(C)) = P (di = 0)(cci + psi) + P (di > 0)cd.
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One can see that a player only expects to get the shared payoff in case of all-
cooperative outcomes. When E(gaini) > 0, the expected gain from resampling
outweighs the negative consequences of the necessary amount of defecting, so
the player plays D during the next stage. Otherwise it plays C.

In our model time of stability TSi is the same constant for all players. Also
the expected value of resampled cooperative payoffs for all players is the same:

E(ccnew
i ) =

CCmin + CCmax

2
.

The belief SCi(k) about the proportion of players playing C at stage k is
maintained by each player individually. After each stage each player learns about
the strategies of its opponents for that stage. SCi is then updated according to

SCi(k + 1) = γSCSCobs
i (k + 1) + (1− γSC)SCi(k) (1)

where γSC ∈ (0, 1] is learning rate. Each player also maintains δSCi(k), an
estimate of

δSC(k) ≡ SC(k)− SC(k − 1),

using an expression analogous to Eq. 1 to update it.
Having SCi and δSCi each player can estimate TTRi using a linear approx-

imation (TC, a constant parameter of the system, is the expected number of
stages the population will stay with SC < T ; in Fig. 1 this is the time between
A and B):

TTRi = min
{

+∞,
T − SCi

δSCi

}
+ TC

and then compute E(gaini).

3.3 Algorithm discussion

A natural question arises regarding the above algorithm: why would player xi

think that by playing D it influences the system so as to cause more players to
play D? One can show that this is a reasonable assumption similar in spirit to
a Nash equilibrium: if all other players use the algorithm above, then xi playing
D indeed causes additional players (in expectation) to play D on the next stage.
Provided that SC > T is large enough and players’ beliefs are accurate enough
(we do not list the exact conditions because of space limitations, but most of
the time, they hold in the experiments),

E(E(gainj)|xi plays D) < E(E(gainj)|xi plays C)

so xj is no less likely to play D when xi plays D than when xi plays C. This
reasoning does not hold near the boundary SCj ≈ T : when SCj < T , xj will
always play C, but we believe that it is a useful approximation for a boundedly
rational player to make.
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4 Experimental results

In our experiments the population size was fixed to 1000 players. The numerical
values of payoff constants were

dc = −1, dd = −3, cd = −5, CCmin = 3, CCmax = 10

Estimated time of stability was fixed to TSi = TS = 50 stages, “chaos threshold”
T = 0.7. Initial player-specific values were SCi(0) = 1, δSCi(0) = −0.02. For
each set of specific parameter values the results were averaged over 500 runs.

We were primarily interested in how different parameters of the model af-
fect the evolution of proportion of players playing C over time. On all graphs
x-axis denotes the stage of the interaction, y-axis denotes SC. The level of “sys-
tem state change” threshold T is also plotted on every graph for reference. Note
that because the plotted results are averages over multiple runs, the fact that the
value of SC on the plots rarely if ever drops below T does not mean that payoffs
are almost never resampled - individual runs have much more variance and re-
sampling happens quite often. Averages however often provide more meaningful
information about the influence of the parameters values on the system.

Social network type : The type of the social network affects the outcome of
the interaction. We have experimented with 4 cases: no network at all, random
network, small-worlds network and scale-free network. For random network
every pair of players is equally likely to be connected.

Small-world property of the network means that the average distance between
two nodes in the network is small. It has been shown [4] that regular non-
small-world networks, such as grids, may be transformed to small-world ones by
changing only a small fractions of edges. We followed the algorithm from [4] to
generate the networks with probability 0.1 of rewiring any edge of the regular
structure.

In scale-free networks [1] the number of neighbors of a vertex is distrib-
uted according to a scale-free power law, therefore few highly-connected vertices
dominate the connectivity. Many real-world networks possess the small-worlds
and/or scale-free properties [1, 4].

For all types of networks the average number of links per player was 8.
The results are presented in Fig. 2(a). The results for random network are
not plotted, because they almost coincide with those for small-worlds network.
One can see that the small-worlds network results in much better performance
than scale-free network or no network at all. Although the results for scale-free
network also depend on links density (see Fig. 2(b) and the next paragraph),
this general relation still holds.

Social network density : Not only network type, but also network density
affects the outcome. In this experiment we fixed the type of the network (scale-
free) and varied the average number of links per player. The results are in Fig.
2(b). The performance depends non-monotonically on the density.
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Figure 2: Impact of different model parameters on evolution outcome. x-axis is the
stage number (“time step”), y-axis is the proportion of players that play cooperate on
that stage. The level of “system state change” threshold T is also plotted on every
graph for a reference.

For the remaining experiments we used scale free networks with an average
of 8 links per player.

Information accuracy : In the basic model each player only observes the
strategies of its direct opponents and thus its estimate SCi of the proportion
of cooperators is imprecise. We have experimented with providing the players
with the true value of SC at every stage. Somewhat counter-intuitively, this
decreased the population performance in the long run (Fig. 2(c)).

Learning rate : Finally, we investigate the importance of the learning rate
γSC (see Eq. 1 for details). Smaller learning rate means that the players are
reluctant to change their estimates of the parameter; the closer the learning rate
to 1, the more importance is attributed to the most recent observations. The
results are in Fig. 2(d).
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One can notice two features on that plot. First, extremely low learning
rate (γSC = 0.05) predictably causes oscillations before convergence, because it
takes the players a significant amount of time to realize that a change in the
system occurred (e.g. SC dropped below T ). During that time they act as if
the change has not happened yet (e.g. further decrease the SC). Second, the
average performance of the system increases monotonically with the learning
rate, i.e. the performance is better when the players forget the past faster. The
reason for that is clear if we consider an extreme case of γSC = 1. In this case
a player believes that the overall portion of the population that plays C is the
same as portion of its immediate opponents playing C. Because T = 0.7, it is
enough for one of the two opponents to play D for the player to believe that
globally SC < T and start playing C. The probability of seeing at least one
opponent playing D is (1−SC2) and the probability of not seeing any defectors
for a number of stages drops exponentially with the number of stages. Hence the
players stop playing D very fast, even though they do not necessarily achieve
the resampling of payoffs.

5 Conclusions and future work

We have developed a model of an evolutionary game and conducted experiments
to determined the effects of various parameters (e.g. social network type, den-
sity, and learning parameter) on the long term behavior of the system. The
preliminary results are thought-provoking and in general they underscore the
importance of local knowledge and close community relations for stability. In
future work, we will further explore these results and perform sensitivity analysis
studies.
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