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Through examples in a free-boundary model of solid combustion, this study con-
cerns nonlinear transition behavior of small disturbances of front propagation and
temperature as they evolve in time. This includes complex dynamics of period dou-
bling, quadrupling, and six-folding, and it eventually leads to chaotic oscillations. The
mathematical problem is interesting as solutions to the linearized equations are un-
stable when a bifurcation parameter related to the activation energy passes through
a critical value. Therefore, it is crucial to account for the cumulative effect of small
nonlinearities to obtain a correct description of the evolution over long times. Both
asymptotic and numerical solutions are studied. We show that for special parameters
our method with some dominant modes captures the formation of coherent structures.
Weakly nonlinear analysis for a general case is difficult because of the complex dynam-
ics of the problem, which lead to chaos. We discuss possible methods to improve our
prediction of the solutions in the chaotic case.
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1.1 Introduction

We study the nonuniform dynamics of front propagation in solid combustion:
a chemical reaction that converts a solid fuel directly into solid products with
no intermediate gas phase formation. For example, in self-propagating high-
temperature synthesis (SHS), a flame wave advancing through powdered ingre-
dients leaves high-quality ceramic materials or metallic alloys in its wake. (See,
for instance, [7].)

The propagation results from the interplay between heat generation and heat
diffusion in the medium. A balance exists between the two in some parametric
regimes, producing a constant burning rate. In other cases, competition between
reaction and diffusion results in a wide variety of nonuniform behaviors, some
leading to chaos.

In studying the nonlinear transition behavior of small disturbances of front
propagation and temperature as they evolve in time, we compare quantitatively
the results of weakly nonlinear analysis with direct simulations. We also propose
techniques for the accurate simulation of chaotic solutions.

1.2 Mathematical analysis

We use a version of the sharp-interface model of solid combustion introduced by
Matkowsky and Sivashinsky [6]. It includes the heat equation on a semi-infinite
domain and a nonlinear kinetic condition imposed on the moving boundary.

Specifically, we seek the temperature distribution u(x, t) in one spatial dimen-
sion and the interface position Γ(t) = {x|x = f(t)} that satisfy the appropriately
non-dimensionalized free-boundary problem
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Here V is the velocity of the rightward-traveling interface, i.e. V = df/dt. In
addition, the temperature satisfies the condition u → 0 as x → ∞; that is, the
ambient temperature is normalized to zero at infinity.

To model solid combustion, we take the Arrhenius function as the kinetics
function G in the non-equilibrium interface condition (1.2) [1, 8]. Then, with
appropriate nondimensionalization, the velocity of propagation relates to the
interface temperature as:

V = exp

[(

1

ν

)

u − 1

σ + (1 − σ)u

]

(1.4)

at the interface Γ. Here ν is inversely proportional to the activation energy of
the exothermic chemical reaction that occurs at the interface, and 0 < σ < 1
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is the ambient temperature nondimensionalized by the adiabatic temperature of
combustion products. (See [3].)

The free-boundary problem admits a traveling-wave solution

u(x, t) = exp(−x + t), f(t) = t. (1.5)

It is linearly unstable when ν is less than the critical value νc = 1/3. (See, for
example, [4, 10].)

For the weakly nonlinear analysis, let ε2 be a small deviation from the neu-
trally stable value of ν, namely

ε2 = νc − ν =
1

3
− ν. (1.6)

We perturb the basic solution (1.5) by ε times the most linearly unstable mode,
evaluated at both the neutrally stable parameter value ν = 1/3 and the cor-
responding neutrally stable eigenvalue, together with complex-conjugate terms.
In the velocity expansion, we also include ε times the constant solution to the
linearized problem (although we do not mention it explicitly in the sequel). See
[5].

The normal-mode perturbation is modulated by a complex-valued, slowly
varying amplitude function A(τ), where τ = ε2t. The amplitude envelope satis-
fies the solvability condition

dA

dτ
= χA + βA2Ā, (1.7)

where χ and β are complex constants. (See [5] for details.)
The evolution equation (1.7) has circular limit cycles in the complex-A plane

for all values of the kinetic parameter σ in the interval 0 < σ < 1 (i.e. for
all physical values of σ). To find A(τ), we integrate the ordinary differential
equation (1.7) using a fourth-order Runge-Kutta method.

1.3 Results and discussion

To compare quantitatively the asymptotics with numerics, we first consider ε =
0.1. The value of ν remains at the marginally unstable value νc − ε2, as in
equation (1.6), so ν ≈ 0.323̄. We show in this section that this choice of ε
corresponds to a mix of dynamics as σ varies. Subsequently, we comment on the
impact on the front behavior of both decreasing and increasing ε.

To start, take σ = 0.48 in the kinetics function (1.4). For the remainder of
this paper we take the initial condition A(0) = 0.1, unless otherwise indicated.

Figure 1.1 shows the numerical (solid line) and asymptotic (dashed line)
values of front speed perturbation as a function of time t in the interval 0 ≤ t ≤
60. To find the numerical solution, we used the Crank-Nicolson method to solve
the problem in a front-attached coordinate frame, reformulating the boundary
condition (1.3) for robustness. (See [5] for details.) As for the asymptotic
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Figure 1.1: Velocity perturbation versus time: comparison between numerical (solid
line) and asymptotic (dashed line) for Arrhenius kinetics, σ = 0.48, ε = 0.1, A(0) = 0.1
(ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄)

solution, the previous section describes the order-ε perturbation to the traveling-
wave solution (1.5). In the figure we have additionally included an order-ε2

correction.

Figure 1.1 reveals that from t = 0 to about t = 30, the small front speed
perturbation is linearly unstable, and its amplitude grows exponentially in time.
As this amplitude becomes large, nonlinearity takes effect. At around t = 30,
the front speed perturbation has reached steady oscillation. The asymptotic
solution accurately captures the period in both transient behavior for t = 0
to 30 and the long-time behavior after t = 30. The amplitude and phase differ
somewhat. This is an example in which the weakly nonlinear approach describes
well the marginally unstable large-time behaviors: A single modulated temporal
mode captures the dynamics.

To identify additional such regimes systematically, we calculate numerically
the velocity perturbation data on the time interval 35 < t < 85, throughout the
range of physical values of the kinetics parameter σ (i.e. 0 < σ < 1). Figure 1.2
summarizes the Fourier transformed velocity data. For each σ value and each
frequency, the color indicates the corresponding amplitude, with the red end of
the spectrum standing for larger numbers than the violet end. For roughly 0.3 <
σ < 0.6, the figure shows the dominance of the lowest-order mode, suggesting
the appropriateness of the weakly nonlinear analysis in this range. For other
values of σ, a single mode cannot be expected to capture the full dynamics of
the solution.

In particular, when σ is greater than approximately 0.6, solutions have sharp
peaks, even sharper than the numerical solution in Figure 1.1. Figure 1.2 shows
that when σ is smaller than approximately 0.3, the Fourier spectrum has a
complicated character, starting with the emergence of a period-doubling solution
for σ ≈ 0.25. Figure 1.3 gives a closer look at the dominant modes for the case
of small σ; notice the bifurcation to a six-folding solution near σ = 0.201. The
four numerical solutions in Figures 1.4 and 1.5 illustrate the cascade of period-
replicating solutions, including doubling (σ = 0.22), quadrupling (σ = 0.21),
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and six-folding (σ = 0.20075). Note that Figure 1.2 reflects the breakdown of
the numerical solution for σ less than approximately 0.15.

Figure 1.2: Amplitudes corresponding to each frequency of the Fourier transformed
velocity perturbation data for the Arrhenius kinetics parameter σ in the interval (0, 1),
ε = 0.1, A(0) = 0.1, 35 < t < 85 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄)

Figure 1.3: Amplitudes corresponding to each frequency of the Fourier transformed
velocity perturbation data for the Arrhenius kinetics parameter σ in the interval
(0.19, 0.22), ε = 0.1, A(0) = 0.1, 35 < t < 85 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄)

The cascade of period-replicating solutions for decreasing σ leads to chaos.
Figure 1.6 (corresponding to σ = 0.185) shows the sensitivity of the velocity
perturbation to initial conditions. In the figure, note that from t = 0 to ap-
proximately t = 25, the small front speed perturbation is linearly unstable, and
its amplitude grows exponentially in time, similar to the profile in Figure 1.1.
As the amplitude becomes large, nonlinearity again comes into play. Still, the
curves corresponding to two initial conditions (one with A(0) = 0.1 and the other
with A(0) = 0.1000001) remain indistinguishable for a long time. However, as
time approaches 100 the two profiles begin to diverge, and as time evolves past
120 they disagree wildly.
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Figure 1.4: Velocity perturbations versus time (ε = 0.1, A(0) = 0.1, ν ≈ νc −

ε2 = 1/3 − (0.1)2 = 0.323̄) clockwise from upper left: periodic solution for σ = 0.48
(cf. Figure 1.1), period doubling (σ = 0.22), period quadrupling (σ = 0.21), period
six-folding (σ = 0.20075)

We propose a couple of techniques to improve model predictions in the chaotic
case. One–ensemble forecasting–requires the generation of velocity profiles that
correspond to slightly different initial conditions. The degree of agreement
among curves in the collection (ensemble) demonstrates the level of reliabil-
ity of predictions. In the spirit of the jet-stream forecasts in [9], additional data
can be provided at the points at which the individual members of the ensemble
diverge. For example, Figure 1.6, which shows an “ensemble” of only two curves,
gives a preliminary indication of the need for more data at t = 100.

Alternatively, we can more accurately represent solid combustion by using
statistical methods to “train” the model. Comparisons with experimental data
can reveal systematic and predictable error, as in Figure 1.7 (courtesy of [2]).
The figure, which provides an analogy to the problem under consideration, shows
that temperature forecasts near the sea surface off the coast of Japan are typi-
cally too warm [2]. That is, the actual temperatures minus the predicted temper-
atures are negative values, represented as yellow, blue, and violet in the figure.
In describing combustion, as in describing sea temperatures, one can compensate
methodically for such error.

As the bifurcation parameter ν approaches ever closer to the neutrally stable
value (i.e. as ε decreases), the complex dynamics—including chaos—disappear.
For example, when ε = 0.06, the asymptotic and numerical solutions agree
closely throughout the physical range of σ (0 < σ < 1). By contrast, when ε
grows to 0.12, the σ interval in which one mode dominates strongly has a length
of only 0.01. Varying ε quantifies the domain of applicability of the weakly
nonlinear analysis and delineates the role of σ in the dynamics. (See [5].)

In summary, linear instability provides a mechanism for transition to nonlin-
ear coherent structures. Weakly nonlinear analysis allows the asymptotic study
of the evolution of small disturbances during this transition, providing insight
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Figure 1.5: Phase plots of the four solutions in Figure 1.4: dv/dt versus velocity
perturbation v(t)

Figure 1.6: Velocity perturbation versus time: numerical solution for σ = 0.185,
ε = 0.1, A(0) = 0.1 and A(0) = 0.1000001 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄)

into nonlinear dynamics, which can be investigated numerically.
We also proposed techniques to improve predictions of solution behavior in

the chaotic case. The ensemble method may provide accuracy over long time
intervals. Also, given experimental data, statistical procedures can be used to
train the model.
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Figure 1.7: Curves of predicted (constant) near sea-surface temperature, along with
colored bands of associated error (courtesy of [2])
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