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1 Introduction 
Negotiation is a process by which a joint decision is made by two or more parties [8]. 
The parties first express contradictory demands and then move towards agreement by a 
process of concession making. Negotiation is an important method for agents to achieve 
their own goals and to form cooperation agreements, see e.g. [2,3,12]. Raiffa [9,10] 
explains how to set up a preference profile for each negotiator that can be used during 
negotiation to determine the utility of exchanged bids. 

The representation of an agent’s preferences by mathematical functions, called 
utility functions, which map values of issues to the utility of bids (bundles of issue 
values), allows the development of software support for negotiations. The complexity 
of a utility function determines the computational complexity of the negotiation 
process. In case a utility function is a weighted sum of evaluation functions in a single 
issue variable negotiation is tractable. This model of issue variables influencing overall 
utility independent from other issues also seems to correspond to the way the average 
human tackles negotiation. Humans tend to simplify the structure of their preferences 
and prefer to negotiate one issue at a time [13]. Absence of issue dependencies allows 
for the use of efficient negotiation strategies.  

However, in some domains issue dependencies influence the overall utility of a bid. 
In such cases it is no longer possible to negotiate one issue at a time and Klein at al in 
[6] show that there is no efficient method that an agent can use to negotiate multiple 
issues, even if the agent tries to guess the opponent’s profile. They propose to use a 
mediator who uses a computationally expensive evolutionary algorithm that can solve 
non-linear optimization tasks of high dimensionality. 

In this paper, we briefly discuss a new approximation approach to tackle the 
complexity problem of a utility space with interdependent issues and present 
experimental results concerning the outcome and the computational complexity of the 
method. For a more detailed discussion of the approach itself and an illustrative case 
study, the reader is referred to [4]. Based on two observations, a weighted averaging 
method is proposed to approximate complex utility functions involving non-linear 
dependencies with functions that do not involve such dependencies. The first 
observation is that not all bids are equally important for negotiation: some bids are not 
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acceptable for the agent or too optimistic to be an outcome of the negotiation.  In effect, 
it is possible to indicate an expected region of utility of the outcome. Second, the 
approximation method might work less ideal if the utility space is “wild” in the sense if 
it has a structure that is chaotic. However, we think that in reality utility functions are 
far from “wild”, thus enhancing in reality the experimental results presented here, since 
the experimental results are based on randomly chosen utility spaces.  

The paper is organized as follows. The next section provides a formal definition of 
utility spaces containing interdependencies between issues. Section 3 describes the 
approximation method for eliminating such dependencies. In section 4 we present 
experimental results and an analysis of the approximation with respect to the original 
utility space in the same negotiation setup. Section 5 concludes the paper. 

2 Utility of Interdependent Issues 
The overall utility of a set of independent issues can be computed as a weighted sum of 
the values of each of the issues by associating an evaluation function with each issue 
variable (see e.g. [5, 10]). The properties of the utility function are derived from these 
evaluation functions which map issue values on a closed interval [0; 1]. This model, 
represented in equation (1), can be used for issue values that are numeric (e.g. price, 
time) as well as for issue values that are discrete (e.g. colors, brands). 
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This setup cannot be used, however, for modeling dependencies between issues and 
equation (1) needs to be generalized to equation (2) (cf. also [1]). Of course, the value 
of an issue does not need to depend on all other issues and subsets of dependent issues 
will have to be considered to model individual examples. 
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As an illustration of a utility space with two dependent issues consider figure (1). 
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Figure 1. Utility space with issue dependencies. 

The representation of a utility space with non-linear issue dependencies as in 
equation (2) is similar to the model proposed in [6]. The main difference is that instead 
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of considering only binary issue values, we also allow multi-valued, discrete, as well as 
continuous issue ranges. 

One of the main problems in dependent multi-issue negotiation is the computational 
complexity associated with searching for appropriate bids in the corresponding utility 
spaces which grows exponentially in the number of issues. One way to resolve this 
problem is to reveal the utility functions of both agents to a trusted mediator (cf. [6]). 
An alternative, interesting option is to investigate the complexity of the utility space 
itself and try to eliminate the dependencies between issues. In that case various 
alternatives for efficient negotiation become available. A new method based on 
approximating a utility space with dependent issues by a utility space without such 
dependencies is discussed in the following sections. 

3 A Method for Approximating Complex Utility Spaces 
The method to eliminate issue dependencies proposed here is based on a weighted 
averaging technique. It incorporates some general observations about negotiation and 
allows an agent to exploit knowledge about a negotiation domain, if available. In 
particular, knowledge about the relative importance of bids and about outcomes which 
reasonably can be expected is an integral part of our approximation method. 

The main objective of the method is to transform a utility space u(x1,…,xn) based on 
dependent issues represented by equation (2) to a utility space u’(x1,…,xn) without such 
dependencies that can be represented by equation (1). Various techniques exist to 
transform complex (utility) spaces with non-linear functional dependencies between 
variables to spaces which are linear combinations of functions in a single variable [15].  

The transformation consists of approximating each of the evaluation functions 
evi(x1,…,xn) by a function ev’i(xi) in which the influence of the values of other issues xj, 
j�i, on the associated value evi(x1,…,xn) have been eliminated. Mathematically, the idea 
is to “average out” in a specific way the influence of other issues on a particular issue. 
The averaging method first presented in [4], consists of four steps discussed next. 

3.1 Estimate an Expected Outcome 
In the first step, the utility of the expected outcome is estimated, using available 
knowledge, if any. This estimate is called the “m-point” and is used to define a region 
in the utility space where the actual outcome is expected to be. The m-point is used to 
feed information about the final goal of negotiation, i.e., the outcome, into the 
approximation technique used to transform the utility space. Any approach based on 
uniform averaging methods has the effect of discarding information uniformly and is 
indifferent to the fact that even before negotiation starts it can be assumed that certain 
regions of the utility space are more relevant to the negotiation than others. 

For multi-issue negotiation in general we may assume that the expected outcome of 
the negotiation is located somewhere in the open utility interval (0.5; 1). Therefore, that 
region is of more importance than others and should be approximated with more care.  

An experienced agent or one with additional knowledge about the domain can 
estimate an expected outcome. Using this expected outcome, the interval (0.5; 1) can be 
narrowed. But even if the agent has no additional information an m-point can be based 
on considerations of the agent’s own utility space. In the latter case, we propose that the 
m-point can be identified with the average of the break-off point (an agent breaks off a 
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negotiation in case any utility with a lower utility is proposed) and the maximum utility 
in the utility space. 

3.2 Select a Weighting Function 
The next step is to select a (type of) weighting function. The selection of a weighting 
function is based on the amount of uncertainty about the estimated m-point (expected 
outcome) in the previous step. As discussed above, not all points within the utility space 
are equally important for obtaining a good negotiation outcome. The approximation 
should be most accurate around the m-point, because those points are most important 
for getting a good negotiation outcome. 

An agent may be more or less uncertain about its estimate of the utility of the 
negotiation outcome. To take this into account, we propose to use two different 
weighting functions. In case the agent has no additional information and, therefore, is 
quite uncertain about the most probable outcome, a relatively broad range of utility 
values around the expected outcome should be assigned a high weight. We propose to 
use a polynomial function of the second order, which is rather flat near the m-point and 
declines closer to the extreme utilities. The corresponding weighting function � then 
can be computed as follows by 3(a). 

( ) ),...,,(
1

),...,,(
2

...,, 21
2

22121 nnn xxxu
m

xxxu
m

xxx −=ψ  
( )

( )
2

2
21 ),...,,(

21 ,...,, σψ
mxxxu

n

n

exxx
−

−
=  

(a) Polynomial weighting function (b) Gaussian weighting function 
(3) 

In the case the agent is reasonably certain about the estimate, a Gaussian function as 
in 3(b) that is defined in terms of a maximum point m and spread � can be used that 
assigns high weights only to bids with a utility close to the expected outcome m.  

3.3 Compute Approximation of Utility Space 
The third step is to calculate an approximation of the original utility space based on 
non-linear issue dependencies using the m-point and the weighting function determined 
in the previous steps. The result of this step is a utility space that can be defined as a 
weighted sum of evaluations of independent issues, i.e. of the form of equation (1). The 
weighted approximation technique proposed here multiplies each evaluation value with 
its corresponding weight and then averages the resulting space by integration. 
Additionally the weighting is normalized over the interval of integration. 
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V denotes the range of integration and is a volume of n-1 dimensionality build from the 
issue dimensions {x1,x2,…,xi-1,xi+1,…,xn}. Of course, not all issues have to depend on 
all others and some issue variables may be dropped from the equation in that case. The 
approximation technique can be applied sequentially for each issue variable which 
involves dependencies between issues. We refer the reader to [4] for some illustrations 
of original and approximated spaces. 

3.4 Analyze Difference � with Original Utility Space 
In the last step an analysis of the difference of the original and approximated utility 
space is performed. Equation (8) is used to assess the range of error for any given utility 
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level. Based on the assessment, thresholds for breaking off the negotiation or accepting 
opponent’s bids can be reconsidered. 

),(),(),( 212121 xxuxxuxx ′−=δ  (8) 

If the error of the bid under consideration is too big, then another bid is proposed. This 
is iterated, until a proposal is found with acceptable error, which is then proposed to the 
negotiation partner. 
 

4 Experimental Results 
In this section, we present experimental results for utility spaces of various dimensions 
with non-linear issue dependencies. We want to  compare the outcomes obtained by our 
approximation method with those obtained using the original utility space, as well as 
assess the efficiency of using an approximation instead of the original space. The 
experimental results presented in this paper are obtained from utility spaces modeled by 
multivariate quadratic polynomials. 

Negotiation takes place between agent A and B. We assume that agent B approxi-
mates a utility space U with non-linear dependencies by a space U’ to more efficiently 
find bids with a particular utility value. The negotiation strategy used by both agents is 
based on the ABMP-strategy proposed by Jonker and Treur [5] and summarized in 
figure 2 for agent B. Any other strategy could have been used for this purpose, since it 
is not the strategy that is under evaluation, but the utility space approximation method. 
Note that the approximated utility space U’ is only used in the initialization and step 3 
in line with its purpose of speeding up the negotiation. Agent B uses the same strategy 
with steps 1 and 4 exchanged and uses exhaustive search in step 3 to determine a next 
bid. To compare outcomes, the negotiation is performed also with agent B using 
exhaustive search in step 3 for each generated utility space. 

Negotiation Strategy Used by Agent B 
Initialization: set initial utility to maximum of U’B. 

1 Evaluate bid bidA(i) received from opponent A: 
 Accept and end negotiation if UB(bidA

 (i))>UB(bidB(i)) 

2 
Compute concession and target utility: 
 Concession � = �*(1-�/ UB(bidB

 (i)))*( UB(bidA
 (i))-UB(bidB(i))) 

 Target Utility � = UB(bidB
 (i))+� 

3 
Determine a next bid: 
 Find a bid bidB(i+1) such that U’B(bidB

 (i+1)) = � 
 and allow for maximum �, i.e. |U’B(bidB

 (i+1)) - UB(bidB
 (i+1))|<� 

4 Send bid to opponent. 

Figure 2. Outline of Negotiation Strategy used by Agent B. 

Also observe that in step 3 an additional check has been incorporated into the 
strategy to avoid the risk of proposing bids with (very) low utilities in the original space 
that have (much) higher utilities in the approximated space. The concessions made in 
step 3 thus are controlled by a parameter � to ensure they are not too big. This 
additional check itself is computationally cheap, since it involves only a simple 
calculation using the original utility equations. Of course, the computational costs will 
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increase since an agent has to search for a bid that is acceptable. The probability of 
finding an appropriate bid, however, is high in regions close to the m-point. Adding a 
check thus still results in significant reduction of the computational costs in comparison 
with exhaustive search. 

Utility spaces have been randomly generated. Since we also want to compare 
outcomes by using exhaustive search, we obviously need to restrict the dimensionality 
of these spaces. We have performed experiments with 2, 3, 4 and 5 issues. In total, we 
performed 3715 experiments in which outcomes were compared with the original 
space: 150 for 2 issues, 300 for 3 issues, 2965 for 4 issues, and 300 for 5 issues. The 
results are depicted in figure 3, which shows a distribution of the deviation from the 
original outcome as a result of using the approximation technique.  
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Figure 3. The distribution of deviations from original outcomes. 

A linear regression model was built to analyze the relationship between negotiation 
outcomes in the original utility space and those obtained by approximation. In our 
experiments, 47% of the outcomes obtained by means of the approximated space (agent 
B) show an improvement over the original outcome whereas 53% do not. The graph 
confirms that the bids computed by using the approximated space preserve their 
meaning for the negotiator, although there is a small chance that the outcome is 
significantly worse than that obtained (at a significantly higher cost) by using the 
original space. 

The number of computational steps required using exhaustive search versus the 
approximated space for 3, 4 and 5 issues is depicted in figure 4. These figures show a 
significant reduction in number of steps that are needed to reach an agreement when the 
number of issues grows. The computational gain for 3 issues is smaller than that for 4 
and 5 issue negotiations, as is to be expected. Since averaging of utilities lowers the 
spread of utility values in the space (both minimum and maximum utilities are raised 
respectively lowered) it is easier to find an appropriate bid in step 3 in the strategy of 
figure 2 for higher dimensional spaces.  

The average computational step in figure 4 for higher number of bids strongly 
decreases for 3 and 5 issues, indicating that for negotiations with high number of bids a 
significant reduction in computation time is obtained. Averages for high number of bids 
in these graphs, however, do not provide the same accuracy as that for 4 issues, since 
negotiations with very high number of bids only rarely occur and less 3 and 5 issue than 
4 issue experiments have been run. 
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Figure 4. Number of steps required to reach agreement. 

5 Conclusion 
In this paper we introduced a new approach that allows agents to deal with complex 
utility functions in a negotiation environment with interdependent issues. Instead of 
representing the negotiation task as an optimization task for interdependent issues we 
propose an approximation method to simplify the agent’s utility space.  

The main advantage of the proposed method is that it enables applicability of a 
wider range of computational negotiation strategies without introducing a mediator into 
the negotiation. Available information about the domain and the most probable 
negotiation outcome can be used to increase the accuracy of the method in the utility 
area around the expected outcome, which is most important for the negotiation. As the 
results show, for utility spaces involving multiple issues approximation significantly 
speeds up the process whereas the likelihood that the resulting outcomes remain 
acceptable is high. 

In future research, we want to identify in more detail which classes of utility 
functions (instead of random spaces) can be approximated accurately by weighted 
averaging. Another interesting direction for research would be a modeling experiment 
with humans, to gain a better understanding of the nature of the complexity of human 
preferences and the ways in which humans simplify the negotiation task. 
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