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The spontaneous generation of an entire organism from a single cell is the epitome of a 

self-organizing, decentralized complex system. How do nonspatial gene interactions extend in 

3-D space? In this work I present a simple model that simulates some biological developmental 

principles using an expanding lattice of cells. Each cell contains a genetic regulatory network 

(GRN), modeled as a feedforward hierarchy of switches that can settle in various on/off ex-

pression states. Local morphogen gradients provide positional information in input, which is 

integrated by each GRN to produce differential expression of identity genes in output. Simi-

larly to striping in the Drosophila embryo, the lattice becomes segmented into spatial domains 

of homogeneous genetic expression that resemble stained glass motifs. Meanwhile, it also ex-

pands by cell proliferation, creating new local gradients of positional information within for-

mer single-identity domains. Analogous to a “growing canvas” painting itself, the alternation 

of growth and patterning results in the creation of a form. This preliminary study attempts to 

reproduce pattern formation through a multiscale, recursive and modular process. It explores 

the elusive relationship between nonspatial GRN weights (genotype) and spatial patterns (phe-

notype). Abstracting from biology in the same spirit as neural networks or swarm optimization, 

I hope to be contributing to a novel engineering paradigm of system construction that could 

complement or replace omniscient architects with decentralized collectivities of agents. 

1   Introduction 

The spontaneous generation of an entire organism from a single cell is the epitome of 

a self-organizing, decentralized complex system. Through a precise spatiotemporal 

interplay of genetic switches and chemical signaling, a detailed architecture is created 

without explicit blueprint or external intervention. Recent dramatic advances in the 

genetics and evolution of biological development, or “evo-devo” [e.g., Carroll et al. 

2001], have started the foundations of a future discipline of generative development. 

The goal is to unify organisms beyond their seemingly endless diversity of form and 

describe them as variations around a common theme. The variations are the specifics 

of the genetic code; the theme is the generic elementary laws by which this code con-

trols its own expression, whether triggering cell division, differentiation, self-



assembly or death, towards form generation. On this stage, evolution is the player. 

 “How does the one-dimensional genetic code specify a three-dimensional ani-

mal?” [Edelman 1988] How does a static linear code dynamically unfold in time 

(metabolic dynamics) and space (cell assembling)? How do nonspatial gene interac-

tions extend spatially? The missing genotype-phenotype link in biology’s Modern 

Synthesis constitutes the main question in evo-devo. These issues also potentially 

open entirely new perspectives in engineering disciplines, including software, ro-

botic, electrical, mechanical or even civil engineering. Could an architecture, device 

or building, construct itself? Would it be possible for a swarm of software agents or 

small robotic components, each containing a “genetic code”, to self-assemble? Al-

though themselves emergent, our cognitive faculties are strongly biased towards iden-

tifying central causes and require great effort to comprehend massively parallel proc-

esses. We spontaneously tend to ascribe the generation of order to one or a few 

highly informed agents, following anthropomorphic stereotypes (designer, architect, 

manager, etc.). Yet, heteronomous human-designed order is the most sophisticated of 

all forms of organization. In living systems, autonomous decentralized order is the 

natural norm because it is the most cost-effective. Information is distributed over a 

large number of relatively ignorant agents, making it easier to create new states of 

order by evolving and recombining their local interactions. To imitate Ulam’s famous 

quip, self-organized systems are the “nonelephant” species of systems science—yet 

they are the least familiar of them. Since natural systems are not engineered: what can 

human-made systems learn from them? [Braha et al. 2006, Chap. 1] 

In this preliminary study I present a simple prototype simulating some aspects of 

biological development with dynamical systems coupled as cellular automata. Fol-

lowing the artistic metaphor of a growing canvas that paints itself [Coen 2000], I at-

tempt to reproduce developmental pattern formation by a multiscale recursive proc-

ess. Starting with a few broad positional and identity domains of cells, details are 

gradually added by cell proliferation and differentiation using only local information. 

A “shape” emerges from self-assembling agents that all carry the same code. Parts 2 

and 3 lay out the main ideas behind the model, which is further discussed in Part 4. 

2   Stained Glass Patterning 

This part describes the principles of developmental patterning based on spatial un-

folding of genetic code [Carroll et al. 2001]—a process that could be nicknamed 

“shape from switching”—and gathers them into an abstract 2-D model. Section 2.1 

briefly summarizes current knowledge about gene regulatory networks and positional 

integration. In Section 2.2 I offer a model of “stained glass” patterning based on an 

array of multitier networks. This model is then generalized in Part 3 to a multiscale 

system that incorporates the growth of the organism in a recursive and modular way. 

2.1   Genetic switches integrate positional information 

An important amount of genetic information critical for development is contained in 

the nonexpressed parts of DNA. Stretches of nucleotide sequences, called genetic 



regulatory sites or switches, control gene expression at multiple stages in the develop-

ing organism. Switches are generally located upstream of the genes they regulate and 

are bound by specific proteins, whose effect is to interfere with the enzymatic proc-

esses responsible for genetic transcription (Fig. 1a). These proteins selectively attach 

to sequences of the DNA strand, as keys to locks, and can either impede (“repress”) 

or accelerate (“promote”) transcription. As genes are often reused at different stages 

and places during development, one genetic switch can take the form of a complex of 

multiple DNA segments separated by gaps and potentially bound by various combi-

nations of promoter and repressor proteins. 
 

 
 

Fig. 1: Principles of spatial patterning from a genetic network. (a) Schematic view of gene 

regulatory interactions on DNA strands: proteins X and Y combine to promote the transcription 

of genes A and B by binding to their upstream regulatory sites, which leads to proteins A and B 

(assuming a simple one gene-one protein relationship); thereafter, A promotes, but B represses, 

the synthesis of I. (b) Formal view of the same GRN. (c) Variation of expression levels on one 

spatial axis, construed as a chain of GRNs: the concentration of X follows a gradient created by 

diffusion; this gradient triggers a gain response in A and B at two different thresholds, thus 

creates boundaries at two different x coordinates (for a given Y level); these domains in turn 

define the domain of identity gene I, where A levels are high but B levels are low. (d) Same 

spatial view in 2-D: the domain of I covers the intersection between high A and low B. 

 

As regulatory proteins are themselves synthesized by the expression of other 

genes, the developmental genetic toolkit can be globally described as a complex web 

of regulatory influences, or gene regulatory network (GRN) (Fig. 1b). Although the 

structural and functional properties of GRNs are not fully understood, it seems that 

they are broadly organized into functional modules [Schlosser & Wagner 2004, 

Callebaut & Rasskin-Gutman 2005] that reflect the successive stages and anatomical 

modules of organismal development. Studies of stripe formation in the Drosophila 

embryo have identified a cascade of morphological refinements that start with global 

molecular gradients and progressively lead to the precise positioning of appendages 

[e.g., Coen 2000, Carroll et al. 2001]. Each period is characterized by the activation 

of a group of genes that respond to regulatory signals from the previous group, and 

trigger the next group (Fig. 1c). As an example, initial protein deposits of maternal 

origin located asymmetrically in the egg start diffusing across the syncytium. Then, 

depending on their concentration on each point, these initial molecules regulate the 



expression a first set of genes at different levels and positions on the embryo’s axes 

(antero-posterior, dorso-ventral and proximo-distal). The regulatory sites for these 

genes are sensitive to the concentration of maternal proteins at various thresholds, 

creating staggered domains of expression in the form of “stripes”. These stripes in 

turn intersect in various ways to give rise to the next generation of gene domains 

(Fig. 1d). In particular, they form identity domains (Drosophila’s “imaginal discs”), 

where cells are characterized by a common signature of genetic activity, setting the 

basis for differentiated limb growth (leg, antenna, wing, etc.) and organogenesis. 

In summary, molecular gradients of morphogenetic factors (the “keys”) provide 

positional information [Wolpert 1969] that is integrated in each cell nucleus by its 

genetic switches (the “locks”) along several spatial dimensions. Developmental genes 

are regulated by differential levels of lock-key fitness and expressed in specific pat-

terns or territories in the geography of the embryo. A territory represents a combina-

tion of multiple gene expression values, i.e., morphogenetic protein concentrations. In 

this study I model the territories of embryo partitioning similarly to the colorful com-

partments created by the intersection of lead cames in stained glass works. 
 

 
 

Fig. 2: Numerical simulation of stained glass domain formation from a simple feedforward 

GRN. (a) Subset of the 100×100 lattice of coupled identical GRNs: bottom nodes X and Y are 

linked to their neighbor counterparts to create diffusion. (b) This GRN contains 4 “boundary” 

genes and 3 “identity” genes: colors represent expression levels at a sample location (dashed 

circles). (c) 2-D domain maps created by each node on the lattice, under random weights: X 

and Y form horizontal and vertical gradients; B1...4 nodes form diagonal boundaries; I1...3 are 

expressed in various intersection segments of the B1...4 domains. (d) Same 2-D maps, superim-

posed (using a different color scheme); bottom: X and Y; middle: B1, B3 and B4; top: I1...3. 

2.2   A feedforward GRN model of stained glass segmentation 

The core architecture of the virtual organism is a network of networks, construed as a 

2-D lattice of identical GRNs (Fig. 2a). Each GRN represents a cell and is connected 

to neighbor cells via some of their GRN nodes [Mjolsness et al. 1991, Salazar-Ciudad 

et al. 2000, von Dassow et al. 2000]. In the present work, my first attempt at model-

ing stained glass patterning uses a simplistic feedforward GRN template (Fig. 2b) 



containing three layers: (1) a bottom layer with two positional nodes, X and Y, (2) a 

middle layer of boundary nodes {Bi(t)}i=1...n  and (3) a top layer of identity nodes 

{Ik(t)}k=1...m (Fig. 2b). Activity variables X, Y, Bi and Ik denote gene expression levels, 

assumed equivalent to the concentrations of proteins that these genes synthesize. In a 

first stage, the boundary nodes compute discriminant functions of the positional 

nodes via weighted sums and sigmoid thresholding: Bi = σ(wix X + wiy Y − θi), where 

{wix, wiy}i=1...n are the connection weights from layer (1) to layer (2), θi is Bi’s thresh-

old value and σ(z) = 1 / (1 + exp(−λz)). Given a set of weight values, the effect of a 

boundary node is to segment the plane into two half-planes of binary expression lev-

els, weak and strong (Fig. 2c-d, middle). Parameter λ controls the slope of the logistic 

function σ, i.e., the sharpness of the boundaries (Fig. 1c). In a second stage, the iden-
tity nodes are activated by particular combinations of ‘on’ and ‘off’ boundary nodes, 

following the same thresholded sum rule: Ik(t) = σ(∑i w'ki Bi − θ'k), where {w'ki} are 

the weights from layer (2) to layer (3), and θ'k is Ik’s threshold value. Therefore, terri-

tories of high identity gene expression are comprised of polygon-shaped regions, at 

the intersection of multiple boundary lines (Fig. 2c-d, top). 
 

 
 

Fig. 3: Illustration of recursive morphological refinement based on a hierarchical GRN. 

(a) These 3 domains can be separated using only 2 boundary nodes. (b) The boundary layer 

increases rapidly with the amount of morphological detail. (c) A more economical and realistic 

approach uses a hierarchy of sub-GRNs: the identity nodes of the lower (earlier) modules de-

fine broad domains that subsequently trigger the higher (later) modules, via new local gradi-

ents. (Admittedly, this simplified diagram does not show a decrease in the total number of B 

nodes, but this is due in part to the absence of homologous modules; see text for a discussion.) 

 

This feedforward network architecture is analogous to the multilayered percep-

tron, an artificial neural model applied to input-output classification in high-

dimensional space. In the perceptron model, the bottom nodes code for input exam-

ples, the top nodes correspond to output classes and the middle layer (or “hidden 

units”) provides elementary discriminant functions used by the output nodes to clas-



sify. A perceptron generates class domains similar to the patterns observed here 

(Fig. 2), also in more than 2-D. The main property of a multilayered perceptron is its 

ability to be programmed to reproduce a great variety of class distributions. During a 

training phase, or “supervised learning”, input examples are presented to the network 

and weights are iteratively modified to minimize the discrepancy between the ob-

served and expected output. Thus, the network can progressively adapt to a desired 

configuration of class domains partitioning the input space. Whereas a two-layer per-

ceptron can only achieve linear separations (the half-planes created by the boundary 

nodes), a perceptron containing three or more layers is theoretically versatile and can 

reproduce class domains of almost all shapes and forms by combining these linear 

separations at a higher level. However, a necessary condition for this versatility is 

that the class domains remain reasonable connected sets, or piecewise connected sets. 

A major drawback is that the number of hidden units (linear boundaries) increases 

rapidly as the class domains become more fractured and scattered in small pieces 

(Fig. 3), eventually tending to infinity in the limit of discontinuous points. 

3   Multiscale Segmentation: The Growing Canvas 

In the previous section we saw that a lattice of coupled perceptron-like GRNs was 

able to generate a stained glass pattern of identity gene domains in two phases: a first 

phase establishing half-planes and a second phase combining these half-planes into 

polygonoid domains. Naturally, the basic boundaries need not be linear; other types 

of discriminant functions can be used on the middle layer nodes, e.g., polynomial, 

radial, Boolean, etc. Moreover, GRNs are not strictly feedforward as genes can be 

interacting within a layer in cooperative or competitive ways to refine each other’s 

response (Fig. 4b). In other words, boundary lines and identity domains could be dis-

placed by mutual attraction or repulsion instead of arising independently. Each layer 

with its recurrent connections might also correspond to an “attractor state” in the 

sense of Kauffman’s genetic nets [Kauffman 1969]. In this case the feedforward 

propagation would correspond to a chain of scheduled phase transitions between tran-

sient attractors. Across all these variants, however, two main properties remain: 

(i) intermediate genes provide elementary domains that are further combined by 

downstream genes in nontrivial, morphology-specific ways; (ii) the intermediate tier 

scales rapidly with the amount of morphological detail (Fig. 3b). 

Point (ii) is the main focus of this section. The simple feedforward GRN presented 

so far, although theoretically universal in its ability to generate segmented patterns, is 

limited in practice by scaling. Moreover, an organism’s shape is not fully generated 

in every detail in just two phases, but rather grows in incremental stages. Biological 

observations indicate that transcription regulation “cascades” down from site to site 

in a broadly directed fashion, so that a GRN structure consists of many more than 

three tiers. In general, early developmental genes seem to pave the way for later sets 

of genes and are generally not reused. A frequent exception to this principle are mul-

tivalent genes that reappear in different organs and at different times during devel-

opment. Yet, their capacity for repeated expression relies on independent combina-

tions of switches (Fig. 4d), which can still be represented by a feedforward network 



with duplicate nodes in different layers (red nodes in Fig. 4). Each node carries out a 

different switch logic under a GRN architecture that remains globally directed. 
 

 
 

Fig. 4: Variations on the simple feedforward multitier GRN architecture (a). (b) Recurrent 

connections are added inside each tier. (c) Tiers are subdivided into subtiers to create a hierar-

chy (compare Fig. 3c). (d) A multivalent gene (red node in all schemas), i.e., a gene that is 

repeatedly expressed at different periods and locations of the developing organism, can be 

formally represented by duplicate nodes in separate tiers: these nodes are activated by different 

protein combinations in input (here, pink and orange) via different regulatory functions. 

 

Therefore, to account for progressive growth and morphological refinement, a 

more adequate GRN model would consist of a hierarchy of subnetworks, where each 

subnetwork performs a function similar to the simple feedforward network presented 

above. Instead of relying on a single group of boundary nodes to cover fine-grain 

details (Fig. 3a-b), the image can be iteratively refined by the action of several map-

ping modules and submodules (Fig. 3c). At first, the network at the bottom of the 

hierarchy only establishes broad identity domains; then these identity domains in turn 

trigger specialized subnetworks that further create local partitioning at a finer spatial 

scale, etc. Morphological details are added in a hierarchical fashion, analogous to 

inclusions of small stained glass motifs into bigger ones (Fig. 5a). Fractal patterning 

has also been explored in “map L-systems” [Siero et al. 1982]; however, these use 

symbolic rules and explicit geometrical features instead of coupled dynamical units. 

In parallel to this hierarchical refinement, the medium expands, i.e., cells multiply 

and expression domains enlarge. Thus, morphological refinement basically proceeds 

by alternation of two fundamental steps: (1) subdivision of a uniform identity domain 

into finer identity domains; (2) enlargement of the new identity domains, which re-

ceive further subdivisions during step (1). The transition from (1) to (2) is carried out 

by cell proliferation, whereby daughter cells inherit mother cell types (i.e., their cur-

rent state of genetic expression: RNA, protein and metabolic concentrations) and 

temporarily preserve the local identity of an expanding domain. The reciprocal transi-

tion from (2) to (1) corresponds to the creation of new local gradients of positional 

information within former single-identity domains. Expanding domains are mapped 

by new local coordinate systems that activate the entry points of a regional subnet-

work of the GRN in the next layer of the hierarchy. These new local gradients emerge 

from a diffusion process similar to the original diffusion of global coordinates X, Y. 

For example, during proliferation a small number of mother cells retain signaling 



material that is not inherited by daughter cells, then later on start diffusing these 

molecules asymmetrically from the borders of the expanding domain toward which 

they were pushed. Naturally, steps (1) and (2) are not strictly separate; they can over-

lap and unfold at different rates in different body parts without global synchrony. 
 

 
 

Fig. 5: The growing canvas of morphogenesis: pattern formation proceeds by successive re-

finement steps on an expanding medium. (a) Simulations with a 2-layer hierarchy of 3-tier 

GRNs; each GRN contains 2 horizontal + 3 vertical boundary nodes that give rise to 12 rectan-

gular identity domains; 2 early domains become subdivided. (b) Same general idea illustrated 

by a portrait at multiple scales of resolution [after Coen 2000] and a generic network diagram. 

4   Discussion and Future Work 

In this article I have shown the possibility of multiscale pattern formation based on an 

expanding lattice of hierarchical, feedforward gene regulatory networks. The alterna-

tion of growth and patterning ultimately results in the creation of a “form”, repre-

sented by an image or shape on the lattice. The hierarchical GRN structure ade-

quately supports both the temporal sequence of developmental stages and the spatial 

accumulation of details. Most importantly, compared to a single layer of discriminant 

functions (Fig. 3a-b), a hierarchy allows the reuse of modules and thus can greatly 

reduce the number of intermediate gene nodes needed to generate a full mapping. In 

the fictitious example of Fig. 3 the number of B nodes is actually not smaller in the 

hierarchical network than in the flat network because the pattern does not contain 

repeated or “homologous” parts. However, in biological development a key property 

is modularity: organisms are made of repeated segments, most apparent in arthropods 

or the vertebrates’ column and digits. Genetic sequencing has revealed many identi-

cal or highly overlapping stretches of DNA code not only within individuals but also 

across species, which indicates that during evolution segments might have duplicated 

then differentiated [Carroll et al. 2001]. In the present model, this would correspond 

to reusing the same subnetwork multiple times within one hierarchical layer (as in 

Fig. 5a, second layer), then mutating these copies to create variants. 



In this study I attempted to clarify the elusive relationship between genotype and 

phenotype, specifically how a nonspatial genetic network can unfold in space to be-

come a 2-D or 3-D shape. The problem of the quantity of information or “genetic 

cost” is of central importance here: What is the minimal number of gene nodes 

needed to cover a given amount of morphological details? Organisms obviously con-

tain far less genes than cells or even local regions of homogeneous cell identity. This 

means that a GRN is actually extremely sparse and development cannot be entirely 

specified by positional information and switch-based logic. Modularity and compo-

nent reuse are also not sufficient to explain the relative paucity of genetic instruc-

tions. Therefore, other “epigenetic” factors must contribute to the generation of mor-

phological details: cell-to-cell signaling interactions (differential adhesion, Turing 

patterns), shape-sculpting programmed cell death (e.g., between digits), differential 

growth rates and topological transformations (gastrulation, mechanistic folding, etc.) 

[Webster & Goodwin 1996, Nagpal 2002]. A more comprehensive model of self-

organized development should contain all of the above mechanisms (Fig. 6). 
 

 
 

Fig. 6: The big picture of morphogenesis. A comprehensive model of form development would 

integrate several elementary genetic and epigenetic mechanisms. (1) Guided patterning: GRN-

controlled establishment of expression maps (this article). (2) Differential growth: deforma-

tions (bulges, offshoots, limbs) created by domain-specific proliferation rates. (3) Free pattern-

ing: texture (stripes, spots) emerging from Turing instabilities. (4) Elastic folding: transforma-

tions from mechanistic cellular forces. (5) Cell death: detail-sculpting by domain removal. 

 

In sum, the complete morphogenetic program (the “theme”) consists of a set of 

developmental laws at the cellular level, while the parameters of this program (the 

“variations”) are represented by specific GRNs. Fed into the same program, different 

GRNs will give rise to different shapes. At this point, evolution enters the stage (the 

“player”) and two complementary issues arise: given specific GRN weights, what 

pattern will the growing canvas create? Conversely, given a desired pattern as a tar-

get, what values should the GRN weights take to produce this pattern? Beyond the 

biological challenge of unraveling real-world molecular pathways, these questions 

also raise a technological challenge: dynamic self-assembly and autonomous design 

in the absence of a global symbolic blueprint—e.g., as in swarm robotics or distrib-

uted software agents. Previous artificial models of development have mainly fol-

lowed a bottom-up approach by observing, classifying and selecting patterns emerg-

ing from given GRNs, whether randomly wired or biologically detailed. For example, 

aposteriori statistical analyses try to identify prototypical wiring patterns in GRNs 



[Salazar et al. 2000]. My intention is to explore the top-down, “reverse-engineering” 

approach and suggest through this preliminary study that potentially any given spa-

tially-explicit blueprint could be encoded in the weights of a nonspatial GRN. While I 

have not proposed a specific algorithm to compute the weights in this article, known 

methods could be investigated and adapted, whether direct calculation (back-

propagation, or back-compilation of global effects into local rules, similarly to [Nag-

pal 2002]), fitness-based evolutionary algorithms, or a combination of both. 

In the same spirit as artificial neural networks or ant colony optimization, my goal 

is less a faithful reproduction of biological mechanisms than their abstraction and 

potential application to computational and technological problems. Drawing from 

biological development, I hope to be contributing to a novel engineering paradigm of 

system construction (virtual or physical) [Braha et al. 2006] in which the emergence 

of complex structures does not exclusively rest on one omniscient architect, but partly 

or fully on a decentralized collectivity of simple agents, each endowed with a low-

cost, incomplete network of instructions. 
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