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1. Abstract 
This paper analyzes how the interconnection of subsystems affects the network 
dynamics of the overall system’s connective stability. Some closed form equations for 
the magnitude of the interaction between subsystems are obtained to aid in the design of 
nearest neighbor interconnected subsystems or fully interconnected subsystems. 

2.   Introduction 
Multi robot formation algorithms have been of considerable importance in the control 
and robotics communities due to their applications in search and rescue missions, air 
traffic control, automatic highways and military operations such as reconnaissance, 
surveillance and target acquisition to mention a few. The analysis of connective 
stability for different subsystem interconnections in robot formations has not been 
examined, and so, this paper is intended to fill that gap. 
      In previous work multi robot formations have been accomplished in several 
different ways. Behavioral-based approaches have been used for robot formations 
[Balch 1998], [Arkin 1992] and [Kube 1993], but do not include a formal development 
of the system controls from a stability point of view. Artificial formations have been 
studied using analogs to animal behavior. Reynolds developed a simple egocentric 
behavioral model for flocking which is instantiated in each member of the simulated 
group of birds. The behavior consists of several separate components [Reynolds 1987]. 
In other studies algorithms for formations have been proposed such as in [Fredslund 
2001] and [Fredslund 2002], where each robot keeps a single friend at a desired angle 
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and the goal becomes to center the friend in the robot sensor’s field of view. More 
recent work has been taking a system control perspective. Feddema [Feddema 2001], 
[Feddema 2002] uses decentralized control theory to control motion of multiple robotic 
vehicles in formation along a line. Desai [Desai 1998], [Desai 2001] modeled a 
formation of nonholonomic mobile robots and developed a framework for transitioning 
from one formation to another. Chen and Luh [Chen 1994] used distributed control in 
large groups of robots to cooperatively move in various geometric formations. 
In this paper, the preliminaries for decentralized control of large scale systems [Siljak 
1991] and [Siljak 1990] are introduced, and the connective stability analysis of multiple 
subsystems using Lyapunov vector functions are addressed. Three types of network 
interconnections are then defined. Part 6 defines the state space representation for the 
robot dynamics, which then proceeds to a complete definition of the parameters for two 
subsystems of interest: a diagonal subsystem and the robot subsystem. In part 8, the 
results for connective stability are computed, along with some closed form equations 
that are useful when designing nearest neighbor and fully interconnected subsystems. 
 

3.   Preliminaries 

Let us consider a dynamic system S described by the differential equation, 
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where ntx ℜ∈)(

�  is the state of S  at time ℑ∈t , ptu ℜ∈)(
�  are the inputs and 

qty ℜ∈)(
�

 are the outputs. Assume the function npnf ℜ→ℜ×ℜ×ℑ:  (which 
describes the dynamics of S ) to be defined and continuous on the domain pn ℜ×ℜ×ℑ . 
Assume the function qnh ℜ→ℜ×ℑ:  (which describes the observations of S ) to be 
defined and continuous on the domain nℜ×ℑ , so that solutions of (1) exists for all 
initial conditions. The system S  described by (1) can be decomposed into N  
interconnected subsystems iS  described by the equations, 
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      In this new description of the system S , the functions iii npn

if ℜ→ℜ×ℜ×ℑ:  

represent the dynamics of each isolated subsystem iS , and inpn
if ℜ→ℜ×ℜ×ℑ:

~  

describes the dynamic interaction of iS  with the rest of the system S . The function 
ii qn

ih ℜ→ℜ×ℑ:  represents the observations at iS  from its local state variables, and 

the function iqn
ih ℜ→ℜ×ℑ:

~  represents the observations at iS  from the rest of the 

system S . Feedback may be added to the system S  as follows, 
,},...,1{),,(

~
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where ii nq
ik ℜ→ℜ×ℑ:  represents the control law applied at iS  from its local state 

variables, and the function inq
ik ℜ→ℜ×ℑ:

~  represents the observations at iS  from the 
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rest of the system S . 
      For linear time invariant lumped systems, (1) can be described by a set of equations 
of the form, 
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where A , B  and C  are, respectively, nn × , pn × , and nq × , constant matrices. 
The system S  in (4) has p  inputs, q  outputs and n  state variables. In a similar way 
as in (2), the system S  described by (4) can be decomposed into N  interconnected 
subsystems iS  described by the equations, 
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where iA , iB  and iC  are, respectively, ii nn × , ii pn × , and ii nq × , constant 

matrices. Each subsystem iS  in (5) has ip  inputs, iq  outputs and in  state variables 

such that �
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. The matrices ijA , ijB  and ijC  

represent the interaction among the subsystems. The matrices iA , iB  and iC  represent 

the “self-interaction” within the same subsystem iS . The elements ije  are defined as 
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      The matrix ( )ijeE =  is called the fundamental interconnection matrix [Siljak 

1990]. The elements ijb  are defined as, 
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and the elements ijc  are defined as, 
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      A decentralized control can be implemented on the partitioned dynamic system 
using local control based on local observations. Formally for each subsystem iS  a 
linear local control of the form, 

i
T
iii xKru
��� −=      (9) 

is applied based on local observations, i.e. each element of the matrix 0=ijB  and 

0=ijC  { }Nji ,...,1, ∈∀ . Substitution of the decentralized control given by (9) in (5) 

would reconstruct the partitioned closed loop dynamics as, 
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where T

iiiiCL KBAA −=)( , 
iiCL BB =)(  and 

iiCL CC =)(  are the closed loop matrices for 

each subsystem iS . 

4.   Connective Stability 

Analysis of connective stability is based upon the concept of vector Liapunov 
functions. It should be mentioned that there exists no general systematic procedure for 
choosing vector Liapunov functions. The outline method for stability analysis first 
assumes that the complete system S  has been decomposed into N  interconnected 
subsystems iS . To have stability of each subsystem iS , the scalar function 

( ) ( ) 2
1

ii
T
iii xHxxv
��� =  is proposed as candidates for the Liapunov functions of each iS , and 

require that for any choice of the positive definite matrices iG , there exist positive 

definite matrices iH  as solutions of the Liapunov matrix equations 
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T
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which must satisfy the inequality vWv
��� ≤  to guaranty connective stability of the overall 

system S . The elements of the “aggregation matrix” )( ijwW =  are defined by [Siljak 

1991], 
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where )(•mλ  and )(•Mλ  are the minimum and maximum eigenvalues of the 

corresponding matrices. The matrix W  must have all leading principal minors positive 
to guaranty stability of the overall system S . This method is very powerful, because it 
guaranties that the system S  will be stable even if an interconnection becomes 
decoupled, i.e. 0=ije , or if the interconnection parameters are perturbed, i.e. 10 << ije  

[Siljak 1990]. 

5.   Network Interconnection types 

The following interconnections for a team of independent subsystems (robots) are 
considered (Fig. 1), 
1) Nearest neighbor interconnection (NN): each subsystem interacts only with its 
nearest neighbors. 
2) Nearest neighbor interconnection with a central unit (NC): each subsystem interacts 
with its nearest neighbors and with a central unit (subsystem 1). 
3) Full interconnection (FI): every subsystem interacts with every other subsystem. 
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Figure. 1.  Formations for four subsystems (robots): (a) nearest neighbor interconnection, (b) 
nearest neighbor interconnection with a central unit (1), and (c) full interconnection. 
 
      The dynamics of the overall system S  for the nearest neighbor interconnection for 
N  subsystems can be described by (Fig. 2), 
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where Q  is the interaction gain matrix between subsystems. The fundamental 

interconnection matrix that describes the interactions of (12) is given by the NN ×  
constant matrix, 

.

10000

01110
00111
00011

�
�
�
�
�
�

�

�

	
	
	
	
	
	




�

=

�

��

�

E

    (13) 

Note that 1111 QCBA −= , 2112 QCBA = , etc. 
      In a similar way, the fundamental interconnection matrices for the nearest neighbor 
interconnection, with subsystem 1 as the central unit, and the full interconnection 
interaction, can be computed as the following NN ×  constant matrices, 
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respectively. 

6.   Robot dynamics 

In a group formation of mobile robots a natural way to select the subsystems is 
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Figure. 2.  Control block diagram for the nearest neighbor interconnection of N  subsystems. 
 
selecting each robot as a subsystem. The equations of motion for each robot 
(subsystem) are based on simple Newtonian point physics [Cliff 1996], and a model 
that captures the torque produced by a direct current (DC) motor given by [Kalmar 
2004], 

µωατ −= V ,     (16) 
where V  is the voltage applied to the DC motor, ω  is the angular velocity of the motor 
shaft and (α , µ ) are constants properties of the DC motor given by aI Rk /=α  and 

aIf Rkk /=µ , where Ik  is the motor torque constant, fk  is the back-emf constant of 

the motor and aR  is the armature resistance. 
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Figure. 3.  Differential drive robot. Subsystem dynamics for each robotic vehicle. 
 
      For a two wheeled drive mobile robot (Fig. 3), the equation of motion that describes 
its translation Tx  is given by, 

LLRR
T

eff
T VV

dt
dx

b
dt

xd
m αα +=+2

2
,    (17) 

where m  is the mass of the robot, effb  is the effective viscous damping coefficient, and 

RV  and LV  are the voltages being applied into the right and left motors that drive the 
corresponding wheels. Rα  and Lα  are the constants for the right and left motors. It can 

be shown that ( ) 2/ ωµµ rbb LReff ++= , where ωr  is the radius of the wheel, and b  is the 

friction coefficient of the vehicle in the media. 
      The equation of motion that describes its changes in orientation θ  is given by, 
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J ααθθ
ωω
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2
,   (18) 

where J  is the moment of inertia, effbθ  is the effective angular viscous damping, and 

L  is the distance from the wheel to the center of the robot (Fig. 3). It can be shown that 
( ) 22 / ωθθ µµ rLbb LReff −+= , where θb  is the angular friction coefficient. Defining the 

state vector as ( ) ( )θ���
,, 21 Txxxx == , (17) and (18) are a two input two output system that 

can be written in state space as, 
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and,  
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7.   Subsystems 

The following two subsystems are of particular interest,  

Any diagonal subsystem DS  

      It is assumed that every single subsystem iS  is represented by a nn ×  state space 

with n  inputs and n  outputs. Stability of each subsystem is accomplished by using 
pole placement such that i

T
iii IKBA β−=−  where 0>β  and iI  is the identity nn ×  

matrix. Assume each subsystem to be fully controllable and observable by setting 
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ii IB =  and ii IC =  for all },...,1{ Ni =  where iI  is the identity nn ×  matrix. The 

interaction gain matrix between subsystems is given by iIQ γβ=  where 0>γ  and iI  

is the identity ii nn ×  matrix. For the nearest neighbor interconnection, the dynamics of 

the overall system S  for N  subsystems described by (11) would be given as, 
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Robotic subsystem RS  

      Each subsystem iS  has the state space representation given by (19) and (20). The 

dynamics of the overall system S , for the nearest neighbor interconnection for N  
subsystems, is described by (12). The following parameters have been used in this 

robotic model: �
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8.   Results 

The computation of connective stability is done for (a) the diagonal subsystem, and (b) 
the robotic subsystem. The following results used 1=β  for the diagonal subsystem. 
Connective stability is investigated using the “aggregation matrix” define by (11). This 
test sets an upper bound on the magnitude of the interactions between subsystems. 
Table (I) and (II) show the maximum magnitude of γ  to guaranty connective stability 
for different subsystem interconnections, where each subsystem used the diagonal 
model DS  and the robotic model RS  respectively. Define 2γ  as the upper bound on the 
magnitude of the interactions between 2 subsystems (e.g. 2/12 =γ  in Table (I)), and 
define Nq  as the upper bound on the magnitude of the interactions for N  subsystems 

(e.g. 6q<γ  for 6 subsystems). As the number of subsystems are increased, Nq  
decreases with no limit for the NC and FI interconnections. Only the nearest neighbor 
interconnection reaches a limit. The limit can be shown to be, 

2

lim 2γ=
∞→ Nq

N
.    (22) 
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      Equation (22) can be used when designing nearest neighbor interconnected 
subsystems to guaranty connective stability. 
      Another useful equation can be found for fully interconnected subsystems, by 
induction, 

1
2

−
=

N
qN

γ      (23) 

gives the upper bound for the interactions when fully connecting N subsystems. 

9.   Conclusion 

Some design equations were presented that could assist in the design of nearest 
neighbor interconnected subsystems or fully interconnected subsystems to guaranty 
connective stability. The more interconnections in the network, the less connectively 
stable the overall system becomes. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

TABLE I 
CONNECTIVE STABILITY FOR DIFERENT SUBSYTEM 

INTERCONNECTIONS (DIAGONAL SUBSYTEM) 
Number of 
Subsystems Connective Stability 

N NN NC FI 
2 2/1<γ  2/1<γ  2/1<γ  

3 3/1<γ  4/1<γ  4/1<γ  

4 2928.0<γ  1909.0<γ  6/1<γ  

5 2763.0<γ  1632.0<γ  8/1<γ  

6 2679.0<γ  1437.0<γ  10/1<γ  

7 2630.0<γ  1280.0<γ  12/1<γ  

8 2598.0<γ  1150.0<γ  14/1<γ  

9 2577.0<γ  1041.0<γ  16/1<γ  

10 2562.0<γ  0949.0<γ  18/1<γ  

N NCFK NCFK 
1

2/1
−

<
N

γ  

∞→N

lim  

2
2/1<γ  0→γ  0→γ  

NCFK = No closed form known. 
 

TABLE II 
CONNECTIVE STABILITY FOR DIFERENT SUBSYTEM 

INTERCONNECTIONS (ROBOTIC SUBSYTEM) 
Number of 
Subsystems Connective Stability 

N NN NC FI 
2 16525<γ  16525<γ  16525<γ  

3 11017<γ  8262<γ  8262<γ  

4 9681<γ  6312<γ  5508<γ  

5 9135<γ  5396<γ  4131<γ  

6 8855<γ  4750<γ  3305<γ  

7 8693<γ  4241<γ  2754<γ  

8 8589<γ  3802<γ  2360<γ  

9 8519<γ  3442<γ  2065<γ  

10 8470<γ  3139<γ  1836<γ  

N NCFK NCFK 
1

16525
−

<
N

γ  

∞→N

lim  

2
16525<γ  0→γ  0→γ  

NCFK = No closed form known. 
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