
Eigen Analysis of Model Based Residual Spectra for 
Fault Diagnostics Techniques 

Z. Mahmood1, N. Lehrasab2, M. Iqbal3, N.S.Khattak1, S. Fararooy4 

1 University of Peshawar, Pakistan  
2 Air University, Islamabad, Pakistan 
3 Education University, Lahore, Pakistan 
4 rcm2 Ltd, United Kingdom 

 
The energy distribution of Residual Spectra generated by Model Based Parity Space relationship drifts in the 
form of Eigen value. The Eigen vector in such a multi-dimensional Residual Space is used to maintain the 
degree and polarity of drift. This paper presents investigations into the issues related to such Eigen analysis. It 
was found that normalized residuals from multiple sources and parity space relations are neutralized in the form 
of unified representation of energy that can be used to form a generic framework for fault detection and 
isolation. The case studies into multi-sensor system were carried out and actual data from sensors is used to test 
this generic framework. It is being investigated, how the proper modeling of qualitative entities as energy, could 
lead to unified and neutral residual space while keeping the implementation cost reasonably low. 
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Introduction 
This research builds on the work [i, ii, iii, iv, v] carried out in 
the area of Single Throw Mechanical Equipment (STME). 
STME was formally defined as a system that has two stable 
states. Whenever activated, it physically moves from one state 
to another. This process of state transition is defined as a 
throw. It is bounded between two stable states, which in the 
practical sense relates to two physical barriers placed at a 
distance `d'. Transition from state A to state B is the forward 
throw while from state B to state A is the reverse throw. 
Practically, the time between two throws (forward or reverse) 
or two operations is dependent on the use and type of 
equipment and may vary from a couple of throws per minute 
to once a day. From an operational perspective, it is acceptable 
to assume that the STME state of health remains same until 
the next throw is performed.  
 
Initially, the focus of research was only to the STME, but later 
it was found that such approach can be extended to most of the 
complex systems in industry where the discrete inputs using 
switches is only available. Such systems are already being 
used or can be a cost effective addition. In this paper, the 
focus has been maintained only to STMEs that can be easily 
extended to include numerous industrial applications for 
condition monitoring. For industry [vi, vii], if the new sensors 
need to be employed, they must have, 
• Reliability better than the system itself; 
• Cost-effectiveness; 
• Minimum maintainability such as calibration; 
• Suitability for harsh environment; 
• Robustness to noise and disturbances under varying    

operating conditions. 
 
Limits sensors are the best candidate although because of their 
limitation to detect a continuous change in residuals, the 

research and academia maintains focus on continuous sensors, 
while industry keeps the limit switches as their key sensor. The 
paper attempts to bridge the gulf and formally presents a 
framework for deploying optimal number of limit switches to 
capture the process dynamics and use them in model based 
residual generation. 
 
FDI Framework for STME  
The concept behind the design of such frame work is that the 
energy from the source or the input is distributed based on the 
energy paths provided by the system that can be viewed as the 
eigen values or spectral decomposition of any system. The energy 
distribution model if perturbs or deviates from the nominal 
distribution can be detected by the parity space residuals. The 
basic residual generator [viii, ix] in its time domain representation 
is,  
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For a no-fault case we have r(t)=0 and y(t)=M(φ)u(t),  
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The primary residuals o(t) are, 

)()()()( tuMtyto φ−=    (3) 
 
After substituting y(t), 

[ ]DDFFNDF tttvStqStpSWtr θθφφφφ ∆Ψ+∆Ψ+++= )()()()()()()()()()(  
(4) 

It is now evident that the residual generation process relates 
primarily to evaluating W(φ) which meets the design 
specifications. This shows that generalised residual generator and 
parity space residual generator are mathematically similar. 
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The case can be considered for structured or un-structured 
residuals. In case of structured residuals, a limited number of 
faults can be diagnosed neatly based of the basis set provided 
by the eigen vectors. The energy variations are the measure of 
the fault or deviation in a desired canonical form and this is 
limited by the number of independent residuals. For n number 
of residuals, we can have 2n uniquely identifiable faults[x]. 
This results in a special matrix structure representing the 
effect of faults and disturbances on the residuals. 
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For a square SF without any rank defect, complete response 
can be specified, otherwise only partial specification can be 
obtained, 
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The desired response may now be computed. This may also be 
achieved using elimination of variables. 
 
The aim of this approach is to generate a number of 
independent residuals by exploiting the model non-linearities 
that are left un-modelled when linear models of complex 
systems are identified. The leftover structure in the residuals 
has been found sensitive to faults [xi], while significant effect 
is not observed in controlling such systems. The non-linear 
aspects become more dominant in case of faults and such 
residuals play a pivitol role in sensitive residual generator 
design. The static transformations considered in this case are 
not static in the sense of process dynamics.  
 
In order to understand this approach, the framework for STME 
is discussed here. It attempts to utilise the residuals generated 
from the array of limit switches or position sensors, placed at 
the boundaries of the linear regions of the observable 
dynamics profile. The residuals are used to generate an 
appropriate structure for sensor and system fault isolation. The 
generic features of this approach are, 
• Set of limit-switches used to acquire velocity measurement 

(ds/dt). Since ∆s is fixed and ∆t is measured from the limit 
switches, the velocity can be measured in the required  
region with reasonable accuracy, 

• The Residual Generator prepares a residual-vector with each 
component sensitive to certain faults and insensitive to 
others. This is achieved by elimination of variables, 

• The Fault Detection and isolation is achieved by using the 
thresholds computed from the statistics of the structured 
residuals and are then adapted using exponential models 
according to their sensitivity at the current operating point. 

Cost-effective FDI Sensor  
In order to encourage the deployment of FDI in mass 
production of common use products, it is important to 
consider the cost of sensors. The recent drop in the prices of 
micro-electronics has made the processors and Application 

Specific Integrated Circuits (ASIC) very cheap, but no significant 
drop in sensors prices has been observed for industrial use. Cost 
of limit detectors is very low as compared to other similar 
sensors. The initial approach employed sensors worth 150% of 
the cost of the equipment i.e., in the case of train rotary door 
operator. This is not commercially justified and the increase in 
cost of the final product would reduce the attraction for 
customers. A commercially viable FDI solution should be 
incorporated with minimum extra cost, e.g., using processing 
power and sensors already available. This severely reduces the 
practicality of installing sensitive sensors such as airflow or 
acoustic transducers in industrial applications within limited 
installation and maintenance costs. The best option is to employ 
an array of position sensors to identify either the time taken by 
the STME in travelling a certain distance within each region of 
interest in the transitional path or finding the average velocity 
between two position sensors. The residuals also need to be 
robust to the variations in their installation precision. The average 
velocity over larger spatial regions inherently provides such 
robustness to modelling errors and noise. 
 
The number of independent outputs of the system governs the 
extent of available analytical redundancy[xii]. The examples of 
discrete position sensors that may be used to form an array 
include limit switches, Hall effect sensors, optical sensors, 
magnetic sensors etc. Their mechanical design can usually be 
tailored to fit in the transitional path of an STME in a variety of 
mechanical configurations.  
 
Managing Degree of Freedom  
Degree of freedom relates to our capability to observe or model 
the energy paths within the system. Higher the number of energy 
paths being modeled leaves to us higher degree of freedom, but 
increasing the time and modeling complexity rendering it useless 
for today’s world’s need for minimum time to market. Since the 
number of residuals that can be uniquely isolated are dependent 
on the number of independent outputs of the system, increasing 
the number of sensors required.  
 
In case of fault excluding the sensor or actuator fault, the model 
has already perturbed many and thus changing the spectra of the 
system in first place. The system normally tends to be more and 
more non-linear in case of a fault. 
 
Establishing the independence of observations 
Now comes an important issue of managing the independence of 
residuals while observing a unique profile that can be represented 
very coarsely by even a first order model of the system. 
 
The STME throw has non-linear dynamics that makes the 
modeling very complex and especially its relationship with the 
mechanical energy distributors such as damper (D), mass (M) and 
spring (K). The dynamics of throw profile are captured using 
limit sensors placed at the optimal positions along the transitional 
path. The placement of the sensors along the path is discussed in 
later part of this paper. However, it was found that by increasing 
the number of sensors along the path, the residuals become more 
and more dependent. In order to maintain orthogonality, the 
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sensors are only placed at key locations that are usually 
subject to change in either case of fault, failure or malfunction. 
 
As in case of classical modeling, all energy paths cannot be 
modeled and observed due to practical, commercial or 
implementation concerns, similarly in this case by increasing 
the number of sensors would not be able to capture the 
dynamics or generate residuals for some of the energy 
distribution paths in the system. As in the case of STME, if the 
position sensors are increased beyond a certain number 
(depending on the non-linearity of the throw trajectory), it 
results in mutually dependent residuals that are not useful for 
FDI. 
 
The optimum number of sensors therefore depend primarily 
on the following factors: - 
• Non-linearity of the throw trajectory; 
• Mutual dependence of residuals; 
• Symmetry of forward and reverse throw, asymmetric 

cases may have more or less sensors depending on the 
locations of the regions of interest in the forward and the 
reverse throw trajectories. 
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Figure 1. Residual generation using an Array of Position Sensors 

 
Problem of Symmetry 
Just as in the case of electric circuits, the charging and 
discharging cycle defines the time constant of the system. 
Therefore, the discharging is directly related to the resistance 
to discharge of energy and the capacity or memory to store 
energy. Complex energy storage mechanism leads to more and 
more non-linearity in the system.  
 
In case of STME, the charging can be modeled as the linear 
dynamic process, but the reverse throw transition can vary due 
to release of stored energy or sudden force reversals normally 
achieved by different mechanical coupling or re-routing of 
energy. The reason why symmetry becomes important is 
evident. The figure shows a typical case of K-dominant 
equipment such as a train-stop. The regions of interest for the 
forward throw are significantly different from those of the 
reverse throw. The best option is to add a sensor to capture the 
reverse throw dynamics. The extra residual generated in 
forward and reverse throws may be discarded to eliminate 
unnecessary processing and data acquisition requirements. 

Specifying Best Sensor Location 
The best location can be achieved by three methods, 
• By observing the throw trajectory to find the piece-wise 

linear regions approximately ; 

• By finding the regions with close to zero acceleration 
bounded between two abrupt changes in acceleration (zero 
cross-over); 

• By estimating the STME exponential constant (k) over the 
complete operating range and placing the sensors at the 
boundaries of abrupt changes in the estimates of k. 
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Figure 1a. Identification of Sensor Location using Heuristics and Visual Shape 
 
It was found that these approaches gave almost identical results, 
yet with increased off-line processing and mathematics involved. 
The example of a train rotary door operator is explained here. It is 
obvious that the throw trajectory contains at least four 
significantly linear regions R1, R2, R3, R4. The position sensors 
can be placed at their boundaries. To identify the regions 
correctly, it is essential to use a model that can reasonably capture 
the system dynamics while maintaining sufficient independence 
required for the problem in hand. The aim of this intermediate 
system model is only to identify the regions for further 
algorithms, therefore the efficiency, the black-box nature of the 
model and the associated effects are irrelevant. Radial basis 
Functions (RBF) Neural Networks are therefore an obvious 
choice [xiii,xiv]. They are employed for modeling where the input 
represents the operating force u and the output is an m-
dimensional vector representing the throw dynamics. The m 
samples of data are acquired at an interval ∆t starting at time to. 
The spread of RBF model is selected such that the model is 
reasonably generalized over the complete operating region.  
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A good test of the model is at the boundaries of the input-output 
map. Let n be the total zero-crossovers y''i(u)y''i+1(u)<0) then for 
each crossover k, where k=1,2,3,4,.. ,n, the temporal and spatial 
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boundaries are extracted from the distance measurement . 
These boundaries are used as a guideline for placing limit 
switches at appropriate locations depending on physical 
constraints. Broadly speaking, the sensors must be deployed at 
the boundaries of the regions with almost zero acceleration.  
 
The best method for identifying the sensor location 
numerically is to use the STME constant. A single sensor is 
gradually moved along the trajectory path. The STME 
constant evaluated with each sensor position is plotted against 
distance. This curve gives the best estimate of sensor location 
with maximum independent residuals.  
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Figure 3. Best Sensor Location using STME Constant, k 
 
The evaluation of sensor locations using this technique is 
presented here. The top two figures are a simulation of the 
sensor being moved along the trajectory path with a uniform 
spacing of 0.1 meters. The STME constant at each position is 
evaluated using the constrained optimization technique. The 
objective is to find a set of design parameters x1, x2, x3. A 
general problem for STME characteristic property 
identification (k=x2) is to minimize the cost-function,  
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where k=1,2,3,.. n and uk and trk are the kth force and its 
associated throw time. The only constraint is based on the 
general behaviour of the STME, 
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The absolute value of the STME constant k for forward and 
reverse throw is plotted against the distance. The resulting 
curve gives a reasonable measure for placing an array of 
sensors giving reasonably independent residuals. This is also a 
measure of the variance of residuals; the crisp curve reflects 
lower variance of the residuals and vice versa. 

Parameter Estimation Approach for STME 
Parameter Estimation [xv] can play a significant role in 
identifying the system faults as well as life cycle stage of STME. 
The model varies with a large number of operations. Although the 
model deviation over few thousand operations may be negligible, 
but over its life cycle, they show a reasonably measurable 
change[xvi]. This can help in finding its life-cycle stage. The true 
model parameters of STME can be given as MT, 

MMM T ∆+=     (9)  
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Figure 4. Static Model Identification 
 

To find ∆M, we can use the primary residual and assume that 
yT(q) is the output from true plant for qth operation, 
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      (10) 
Therefore, for change estimation from parity-space residuals 
using least squares is, 
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The true model parameters MT, 
MMM T ∆+=     (13)  

To find ∆M we can use the primary residual equation and assume 
that yT(t) is the output from true plant, 
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Therefore for change estimation from parity-space residuals using 
least squares is, 
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The inverse function is usually non-linear and, therefore, requires 
an approximation, 
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where 

0=∆∂
∂

=
θθ

MQ  

thus  
θθ ∆=∆= QtutMuto )(')(')(    (18)  

Therefore estimate of ∆θ using least squares is, 
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The equations clearly show the implementation of change in 
process parameters and underlying parameters using parity 
space equations.  

Linear STME Model 
The STME used here for data acquisition and modelling is a 
Train Rotary Door Operator (TRDO) modelled for operating 
range of 30-75 psi. The STME characteristic curves allow the 
visualisation of STME dynamics in a simple 2D presentation 
for forward and reverse throws based on its model structure. 
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Figure 5. TRDO Characteristic Curve for 30-75 psi 

 
The velocity measurements in various regions are fitted with a 
first order polynomial. The eigen values of the correlation 
matrix  reflects the strong dependence of the residuals for all 
regions, but in case of a fault, they exhibit strong 
independence and principal component of each sensor can be 
related to a certain distinct module or physical entity. The 
parity space relation based on system inputs and outputs can 
be expressed as, 
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If ∆u is the input sensor fault and ∆y is the output sensor fault 
in the system, then, 

umyo

umyo
umyo

nnn ∆+∆=

∆+∆=
∆+∆=

Μ
222

111

    (21) 

To achieve an appropriate structure and make certain residuals 
sensitive or insensitive to certain faults, enhancement is 
required. This is achieved by elimination of variables. To 
generate a residual not sensitive to input sensor fault, 
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The slopes of each region around a nominal operating point 
are also the Eigen values if all sensors are considered 
independent and not coupled. But usually the extent of 
coupling can be extracted from correlation coefficient and 
keeping the mechanical model of the STME as black box. The 
parameters estimated that in a diagonal form, also equivalent 
to the eigen values of the system are,  
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mn,λn 0.0041 .0081 0.012 0.0027 

 
In parity space approach the important is the independence of the 
model to faults rather than the system it self. 
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Figure 6. Forward Throw Model (TRDO
 
Statistical Properties of Residuals 
The eigen values acquired using parameter est
systems are subject to their own variance limit
for faults and failures in first place.    
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This shows that models are not good enough and can be 
improved either by reducing the operating region or increasing 
the order of model. Another option is to use exponential 
modelling approach for STME. Some STMEs such as TRDO 
usually have large operating regions; therefore improving 
model quality is very crucial. 

Fault Detection and Isolation (Linear Model) 
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The first five independent residuals are used to generate other 
dependent residuals that can be made sensitive to certain faults 
and insensitive to other faults.  
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Error ∆u had no effect on r5 
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Error ∆u had no effect on r6 
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∆u=+4 __ Opening Operation 
∆u=+2   __ Opening Operation 
∆u=0    __ Closing Operation 
∆u=-2   __ Closing Operation 
 ∆u=-4 __ Closing Operation 

 
__ Adaptive Threshold 

__ Fixed Threshold 
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Figure 7. Residuals and their sensitivity to numerous faults 

 
The residuals r5-r7 are made insensitive to pressure sensor 
failures. Two faults are induced in the system ∆u and ∆y3. The 
effect of this fault ∆y3 is on residuals except residual r7 that is 
insensitive to ∆y3.  
 
Further work 
The problem of STME can easily be extended to rotating 
machines. A rotating machine can be considered in steady state as 
simple harmonic motion and sensors placed could be used to 
generate temporal relationships and thus a set of parity space 
relations very similar to described here in this paper. Any change 
in rotational behavior would generate residuals that can be used to 
identify and isolate faults. 

Conclusion 
This paper attempts to model the STME as single input and 
multiple output system to ensure that enough non-zero eigen 
values are available in order to manipulate the system into desired 
structure. The system involves re-estimation periodically in order 
to identify the direction of rotation of eigen vectors under a fixed 
basis. It has however been found that the residual generator 
managed to yield sensitive threshold to numerous sensor and 
system errors and exhibited repeatable detection of faults under 
varying pressures.   
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