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We introduce first our multi-opponent conflict model and consider the associated

dynamical system for a finite collection of positions. Opponents have no strategic

priority with respect to each other. The conflict interaction among the opponents only

produces a certain redistribution of common area of interests. The limiting distribution

of the conflicting areas, as a result of ‘infinite conflict interaction for existence space, is

investigated. Next we extend our conflict model and propose conflict and cooperation

model, where some opponents cooperate with each other in the conflict interaction.

Here we investigate the evolution of the redistribution of the probabilities with respect

to the conflict and cooperation composition, and determine invariant states by using

computer experiment.
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1.1 Introduction

Decades of research on social conflict has contributed to our understanding of a
variety of key social, and community-based aspects of conflict escalation. How-
ever, the field has yet to put forth a formal theoretical model that links these
components to the basic underlying mechanisms. This paper presents such mod-
els: dynamical-systems model of conflict and cooperation. We propose that it is
particularly useful to conceptualize ongoing.

In biology and social science, conflict theory states that the society or organi-
zation functions in a way that each individual participant and its groups struggle
to maximize their benefits, which inevitably contributes to social change such as
changes in politics and revolutions. This struggle generates conflict interaction.
Usually conflict interaction takes place in micro level i.e in individual interaction
or in semi-macro level i.e. in group interaction. Then these interactions give im-
pact on macro level. Here we would like to highlight the relation between macro
level phenomena and semi macro level dynamics. We construct a framework of
conflict and cooperation model by using group dynamics.

First we introduce a conflict composition for multi-opponent and consider
the associated dynamical system for a finite collection of positions. Opponents
have no strategic priority with respect to each other. The conflict interaction
among the opponents only produces a certain redistribution of common area of
interests. We have developed this model based on some recent papers by V.
Koshmanenko, which describes a conflict model for non-annihilating two oppo-
nents. By means of conflict among races how segregation emerges in the society
is shown. Next we extend our conflict model to conflict and cooperation model,
where some opponents cooperate with each other in the conflict interaction.
Here we investigate the evolution of the redistribution of the probabilities with
respect to the conflict and cooperation composition, and determine invariant
states.

1.2 Mathematical model of conflict with multi-

opponent

In some recent papers V. Koshmanenko (2003, 2004) describes a conflict model,
for non-annihilating two opponent groups through their group dynamics. But we
observe that there are many multi-opponent situations, in our social phenomena,
where they are making conflicts to each other. For example, there are multi race
(e.g., Black, White, Chinese, Hispanic, etc), multi religion (e.g., Islam, Christian,
Hindu, etc) and different political opinions exist in the society and because of
their differences they have conflicts to each other. Therefore it is very important
to construct conflict model for multi-opponent situation to understand realistic
conflict situations in the society.

In order to give a good understanding of our model to the reader, we firstly
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explain it for the case of four opponents denoted by A1, A2, A3and A4 and
four positions. We denote by Ω = {ω1, ω2, ω3, ω4} the set of positions which
A1, A2, A3 and A4 try to occupy. Hence ω1, ω2, ω3 and ω4 represents differ-
ent positions in Ω. By a social scientific interpretation, each ωj , j = 1, 2, 3, 4
represent an area of a big city Ω. Let µ0, ν0, γ0 and η0 denote the probability
measures on Ω. We define the probability that the opponents A1, A2, A3and
A4 occupy the position ωj , j = 1, 2, 3, 4 with probabilities µ0(ωj), ν0(ωj), γ0(ωj)
and η0(ωj) respectively. As we are thinking about the probability measures and
a priori the opponents are assumed to be non-annihilating, it holds that

4
∑

j=1

µ0(ωj) = 1,
4

∑

j=1

ν0(ωj) = 1,
4

∑

j=1

γ0(ωj) = 1,
4

∑

j=1

η0(ωj) = 1. (1.1)

Since A1, A2, A3and A4 are incompatible, this generates a conflicting interaction
and we express this mathematically in a form of conflict composition. Namely,
we define the conflict composition in terms of the conditional probability to
occupy, for example, ω1 by each of the opponents. Therefore for the opponent
A1 this conditional probability should be proportional to the product,

µ0({ω1}) × ν0({ω2}, {ω3}, {ω4}) × γ0({ω2}, {ω3}, {ω4}) × η0({ω2}, {ω3}, {ω4}).
(1.2)

We note that this corresponds to the probability for A1 to occupy ω1 and the
probability for A2, A3 and A4 to be absent in that position ω1. Similarly for the
opponents A2, A3 and A4 we define the corresponding quantities. As a result,
we obtain a re-distribution of the conflicting areas. We can repeat the above
described procedure for infinite number of times, which generates a trajectory
of the conflicting dynamical system. The limiting distribution of the conflicting
areas is investigated. The essence of the conflict is that the opponents A1, A2,
A3 and A4 can not simultaneously occupy a questionable position ωj . Given the
initial probability distribution:
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the conflict interaction for each opponent for each position is defined as follows:
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where the normalizing coefficient
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Thus after one conflict the probability distributions changes in the following
way:
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Thus by induction after kth conflict the probability distributions changes in the

following way:

ω1 ω2 ω3 ω4

A1

A2

A3

A4











p
(k−1)
11 p

(k−1)
12 p

(k−1)
13 p

(k−1)
14

p
(k−1)
21 p

(k−1)
22 p

(k−1)
23 p

(k−1)
24

p
(k−1)
31 p

(k−1)
32 p

(k−1)
33 p

(k−1)
34

p
(k−1)
41 p

(k−1)
42 p

(k−1)
43 p

(k−1)
44











→

ω1 ω2 ω3 ω4

A1

A2

A3

A4











p
(k)
11 p

(k)
12 p

(k)
13 p

(k)
14

p
(k)
21 p

(k)
22 p

(k)
23 p

(k)
24

p
(k)
31 p

(k)
32 p

(k)
33 p

(k)
34

p
(k)
41 p

(k)
42 p

(k)
43 p

(k)
44











(1.7)
The general formulation of this model for multi opponents and multi positions
and its theorem for limiting distribution is given in our recent paper Salam,
Takahashi (2006). We also investigated this model by using empirical data but
because of page restriction we can not include that in this paper.

1.2.1 Computer Experimental Results

In our simulation results M (0) is the initial matrix where row vectors represent
the distribution of each races. There are four races white, black, Asian and
Hispanic denoted by A1, A2, A3 and A4 respectively. ω1, ω2, ...., represents the
districts of a city. Here all three races moving to occupy these districts, thus the
conflict appear. Here M (∞) gives the convergent or equilibrium matrix. There
are several graphs in each figure. Each graph shows the trajectory correspond
to the each element of the matrix. In each graph x-axis represent the number of
conflict and y-axis represent the probability to occupy that position.

In result 1, which is given below, we observe that opponent A1 has biggest
probability in city ω1 and after 9 interaction it occupy this city. Opponent A2 has
bigger probability to occupy city ω2 and ω4. But in city ω4 opponent A4 has the
biggest probability to occupy since the opponents are non-annihilating opponent
A2 gather in ω2 and occupy this city after 9 conflict interactions and opponent
A4 occupy the city ω4 after 9 conflict interaction. Opponent A3 also has bigger
probability to occupy city ω2 and ω3. As opponents are non-annihilating and A2

occupy ω2, opponent A3 occupy ω3 after 9 conflict interaction. Thus each races
segregated into each of the cities. This result shows how segregation appear due
to conflict.
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1.3 Mathematical Model of Conflict and Coop-

eration

Suppose that A1 and A2 cooperate with each other in this conflict interaction.
We express this mathematically in a form of conflict and cooperation compo-
sition. Namely, we define the conflict and cooperation composition in terms of
the conditional probability to occupy, for example, ω1 by each of the opponents.
Therefore for the opponent A1 and A2 this conditional probability should be
proportional to the product,

[µ0({ω1})+ν0({ω1})−µ0({ω1}×ν0({ω1})]×γ0({ω2}, {ω3}, {ω4})×η0({ω2}, {ω3}, {ω4}).
(1.8)

We note that this corresponds to the probability for A1 and A2 to occupy ω1

and the probability for A3 and A4 to be absent in that position ω1.
For the opponent A3 this conditional probability should be proportional to

the product,

γ0({ω1}) × µ0({ω2}, {ω3}, {ω4}) × ν0({ω2}, {ω3}, {ω4}) × η0({ω2}, {ω3}, {ω4}).
(1.9)

Similarly for the opponent A4 we define the corresponding quantities. As a re-
sult, we obtain a re-distribution of the conflicting areas. We can repeat the above
described procedure for infinite number of times, which generates a trajectory of
the conflict and cooperation dynamical system. The limiting distribution of the
conflicting areas is investigated by using computer experiment. Given the initial
probability distribution (1.3) the conflict and cooperation composition for each
opponent for each position is defined as follows:
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(1.10)

Thus after one conflict the probability distributions changes as (1.6), but the
quantities are different from the previous model and by induction after kth

conflict the probability distributions changes as as (1.7), but the quantities are
also different.

1.3.1 Computer Experimental Results

In this computer experimental result opponent A1 and A2 cooperate each other.
We observe that in position ω1 opponent A1 has biggest probability to occupy
this position. As opponent A1 and A2 cooperate each other, both of them
occupy this position after 23 interactions. In position ω3 opponent A3 has the
biggest probability to occupy but as A1 and A2 cooperate each other they occupy
this position after 23 interactions. Since the opponents are non-annihilating
opponent A3 and A4 occupy the positions ω2 and ω4 respectively.
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1.4 Conclusion

Since social, biological, and environmental problems are often extremely com-
plex, involving many hard-to-pinpoint variables, interacting in hard-to-pinpoint
ways. Often it is necessary to make rather severe simplifying assumptions in
order to be able to handle such problems, our model can be refine by including
more parameters to include more broad conflict situations. Our conflict model
did not have destructive effects. One way to alter this assumption is to make the
population mortality rate grow with conflict efforts. We suspect these changes
would dampen the dynamics. We observed that for multi-opponent conflict
model each opponent can occupy only one position but because of cooperation
two opponents who cooperate each other can occupy two positions with same
initial distribution.

We emphasize that our framework differ from traditional game theoretical
approach. Game theory makes use of the payoff matrix reflecting the assumption
that the set of outcomes is known. The Nash equilibrium, the main solution
concept in analytical game theory, cannot make precise predictions about the
outcome of repeated games. Nor can it tell us much about the dynamics by
which a population of players moves from one equilibrium to another. These
limitations have motivated us to use stochastic dynamics in our conflict model.
Our framework also differ from Schelling’s segregation model in several respects.
Specially Schelling’s results are derived from an extremely small population and
his model is limited to only two race-ethnic groups. Unlike Schelling’s model we
do not suppose the individuals’ choices here we consider group’s choice.
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