This contribution proposes a methodology for data analysis. To achieve this, we propose a logical method that involves the Fuzzy Logic of Zadeh and the Peirce's Existential Graphs. Our starting point is the idea that fuzzy logic and existential graphs are complementary. On the one hand, we have the fuzzy logic formalism and its tools for overcoming the problems regarding vagueness and uncertainty. In this way, we may consider the fuzzy logic as pragmatic in a certain sense, because it provides the limits of what is considered significant and the precision to be achieved in a given application. On the other, the peircean logic presents the formalism required to treat problems with respect to the phenomenon representation and
interpretation. As a mathematical system, the existential graphs are extremely powerful: the Alfa part is a complete logic of propositional calculus; the Beta part is a full predicate logic with identity; and the most remarkable work is the Gamma part, it contains the quantified modal and multimodal logic, the higher-order logic, metalogical graphs and logic of non-declarative assertions. Our method is based on the basic structure of fuzzy systems, which consists of: fuzzification interface, rule base; inference engine and defuzzification interface. We propose to insert a new element to this system; the existential graphs. They are linked to the rule base, performing logic transformations on the rules (especially with regard to possible worlds). Thus, the union of these two systems allow us to create such methodology for the representation of possible worlds, mapping qualities relations and logical possibilities that emerge concretely within actual circumstances, but that transcend in at least some ways the particular limits of those contexts. This proposal is applicable to any rule set. However, it may be an important tool to combine those rules automatically inferred from the database with those produced by expert knowledge.