CONTENTS

PREFACE

Part One
THE DESIGN PROCESS: PROPERTIES, PARADIGMS AND THE EVOLUTIONARY STRUCTURE

1 **INTRODUCTION AND OVERVIEW**
1.1 Scope and Objectives
1.2 Common Properties of Design
1.3 Design Theories
1.4 The Mathematical Method of General Design Systems
1.5 Difficulties of the Application of the Mathematical Method
1.6 Preview of the Book
1.6.1 Modeling the Attribute Space (Chapter 4)
1.6.2 The Idealized Design Process (Chapter 5)
1.6.3 The 'Real' Design Process (Chapter 6)
1.6.4 Computational Analysis of Design (Chapters 5-7)
1.6.5 The Measurement of A Design Structural and Functional Complexity (Chapters 8-9)
1.6.6 Algorithmic Methods and Design Applications (Parts III & IV)
1.7 Concluding Remarks
References

2 **DESIGN AS SCIENTIFIC PROBLEM-SOLVING**
2.1 Introduction
2.1.1 Motivation and Objectives
2.1.2 Overview of the Chapter
2.2 Properties of the Design Problem
2.2.1 The Ubiquity of Design
2.2.2 Design as A Purposeful Activity
2.2.3 Design is A Transformation Between Descriptions
2.2.4 Categories of Design Requirements
2.2.5 Bounded Rationality and Impreciseness of Design
6.3.3 Type-2 Design Process \(\langle L, Q, P, T, S_0, F \rangle \) 203
6.4 Correctness and Complexity of the Design Process 205
 6.4.1 Correctness of the Design Process 205
 6.4.2 Computational Complexity of the Design Process Problem 207
6.5 Summary 214
Appendix A - Basic Notions of Automata Theory [Adopted from 3] 215
References 216

7 GUIDED HEURISTICS IN ENGINEERING DESIGN 217
 7.1 Introduction 217
 7.2 The Basic Synthesis Problem (BSP) 218
 7.2.1 Problem Formulation 219
 7.2.2 The Intractability of the BSP 222
 7.3 The Constrained Basic Synthesis Problem (CBSP) 225
 7.3.1 Problem Formulation 225
 7.3.2 Universal Upper Bound on 225
 7.4 Refined Upper Bound on 227
 7.4.1 Probabilistic Design Selection 227
 7.4.2 The Asymptotic Equipartition Property (AEP) 228
 7.4.3 Consequences of the AEP on the CBSP 230
 7.5 Design Heuristics for Feature Recognition 232
 7.5.1 Geometric Modeling 232
 7.5.2 Wireframe Feature Recognition 233
 7.5.3 Combinatorial Analysis of the Connectivity Problem 235
 7.5.4 Combinatorial Analysis of the Feature Recognition Problem 236
 7.6 Summary 237
Appendix A - The Satisfiability Problem 238
References 238

8 THE MEASUREMENT OF A DESIGN 241
 STRUCTURAL AND FUNCTIONAL COMPLEXITY 241
 8.1 Introduction 241
 8.1.1 Complexity Judgment of Artifacts and Design Processes 241
 8.1.2 Two Definitions of Design Complexity 243
 8.1.3 Organization of the Chapter 245
 8.2 Structural Design Complexity Measures 245
 8.2.1 Description of the Valuation Measures 245
 8.2.2 Basic Measures 247
 8.2.3 Composite Measures 249
 8.3 Evaluating the Total Assembly Time of A Product 255
 8.3.1 Total Assembly Time and Assembly Time Measure 255
 8.3.2 Assembly Defect Rates and Assembly Time Measure 261
 8.3.3 Design Assembly Efficiency and Assembly Time Measure 262
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Thermodynamics and the Design Process</td>
<td>267</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Natural Science and Engineering Design</td>
<td>267</td>
</tr>
<tr>
<td>8.4.2</td>
<td>The “Balloon Model”</td>
<td>268</td>
</tr>
<tr>
<td>8.5</td>
<td>Functional Design Complexity Measure</td>
<td>273</td>
</tr>
<tr>
<td>8.6</td>
<td>Summary</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>277</td>
</tr>
<tr>
<td>9</td>
<td>STATISTICAL ANALYSIS OF THE TIME COMPLEXITY MEASURE</td>
<td>279</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>279</td>
</tr>
<tr>
<td>9.2</td>
<td>Other Methods for Design for Assembly (DFA)</td>
<td>280</td>
</tr>
<tr>
<td>9.3</td>
<td>Results and Discussion of the Time Complexity Measure</td>
<td>283</td>
</tr>
<tr>
<td>9.4</td>
<td>The Barkan and Hinckley Estimation Method</td>
<td>285</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Appendix A - Time Complexity Measure of A Motor Drive Assembly</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>290</td>
</tr>
</tbody>
</table>

Part Three ALGORITHMIC AND HEURISTIC METHODS FOR DESIGN DECISION SUPPORT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION</td>
<td>293</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>293</td>
</tr>
<tr>
<td>10.2</td>
<td>AND/OR Tree Representation of Design</td>
<td>294</td>
</tr>
<tr>
<td>10.3</td>
<td>Guiding the AND/OR Search Tree</td>
<td>297</td>
</tr>
<tr>
<td>10.4</td>
<td>A Prototype System to Implement the Design Search Algorithm</td>
<td>300</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Case-1 Overview</td>
<td>300</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Basic Case-1 Definitions</td>
<td>302</td>
</tr>
<tr>
<td>10.4.3</td>
<td>The Case Builder Interface</td>
<td>305</td>
</tr>
<tr>
<td>10.4.4</td>
<td>The Analyzer Interface</td>
<td>312</td>
</tr>
<tr>
<td>10.5</td>
<td>Summary</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>319</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH</td>
<td>321</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>321</td>
</tr>
<tr>
<td>11.1.1</td>
<td>The Role of Clustering (Grouping) in Design</td>
<td>321</td>
</tr>
<tr>
<td>11.1.2</td>
<td>The Circuit Partitioning Problem</td>
<td>324</td>
</tr>
<tr>
<td>11.2</td>
<td>Mathematical Formulation</td>
<td>330</td>
</tr>
<tr>
<td>11.3</td>
<td>Properties of the Circuit-Partitioning Problem</td>
<td>332</td>
</tr>
<tr>
<td>11.4</td>
<td>A Grouping Heuristic for the Circuit-Partitioning Problem</td>
<td>334</td>
</tr>
<tr>
<td>11.5</td>
<td>A Branch and Bound Algorithm</td>
<td>336</td>
</tr>
<tr>
<td>11.6</td>
<td>Computational Results Using the Branch and Bound Algorithm</td>
<td>339</td>
</tr>
<tr>
<td>11.7</td>
<td>Summary</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Appendix A - A Brief Overview of Microelectronics Circuits and</td>
<td>345</td>
</tr>
</tbody>
</table>
their Design
Appendix B - (Proof of Theorem 11.1) 348
Appendix C - (Bounds on the Number of Times Net Type i Must be Packed) 349
References 351

12 PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GENETIC ALGORITHM APPROACH 353
12.1 Introduction 353
12.2 The Genetic Algorithm Approach 354
12.3 A Genetic Algorithm for the Circuit-Partitioning Problem 356
12.4 Computational Results 358
12.5 Other Applications of Genetic Algorithm 361
 12.5.1 The Catalogue Selection Problem 361
 12.5.2 Outline of the Genetic Algorithm 362
12.6 Summary 363
References 363

13 ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 365
13.1 Introduction 365
 13.1.1 Managing the Intricate Correspondence Between Function and Structure 365
 13.1.2 The Applicability of the Methodology 367
13.2 Problem Formulation 368
13.3 Adaptive Learning of Successful Design 369
 13.3.1 The Probabilistic Nature of the Design Process 369
 13.3.2 Preliminaries 371
 13.3.3 The P-Learning Algorithm 374
13.4 Illustrative Example 376
13.5 A Catalogue Structure for the P-Learning Algorithm 381
13.6 Summary 382
Appendix A - Computation of the Experimental Success Probabilities 383
Appendix B - Bayes’ Theorem 384
References 385

14 MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 387
14.1 Introduction 387
 14.1.1 Variational Design 387
 14.1.2 Design Consistency in Variational Design 388
 14.1.3 Chapter Outline 389
14.2 Previous Efforts 389
 14.2.1 Geometric Reasoning 389
 14.2.2 Numerical Techniques based on Continuation Methods 390
Part Four DETAILED DESIGN APPLICATIONS

17 DESIGN OF A WORMGEAR REDUCER: A CASE STUDY

17.1 Introduction
17.2 Conceptual Design of A Wormgear Reducer (Gear Box)
 17.2.1 Confrontation
 17.2.2 Problem Formulation
 17.2.3 Design Concepts
17.3 Detailed Synthesis of the Gear Box
 17.3.1 Motor Design
 17.3.2 The Design of the Transmission Parts and the Outline of Their Relative Position
 17.3.3 Testing the Current Design Against the Wormgear Load and Strength Constraints
 17.3.4 Initial Design of the Casing (Box)
 17.3.5 The Design of the Wormgear Shaft Set
 17.3.6 Calculation and Check of the Shaft Set Parts
 17.3.7 Strength and Wear-Resistance Constraints
 17.3.8 Detailed Design of the Casing
 17.3.9 Accessories Design
 17.3.10 Casing Heat Balance Constraints
17.4 Discussion
 17.4.1 Design Description \((L)\)
 17.4.2 Transformation \((T)\)
17.5 A Methodology for Variational Design
 17.5.1 The General Methodology
 17.5.2 Demonstration
 17.5.3 Design Execution

References

18 ADAPTIVE LEARNING FOR SUCCESSFUL FLEXIBLE MANUFACTURING CELL DESIGN: A CASE STUDY

18.1 Introduction
18.2 Physical Configuration
18.3 Parameters and Performance Measures
 18.3.1 Performance Measures
 18.3.2 Parameters and Structural Assumptions
 18.3.3 Evaluation of the Responses Through Simulation
18.4 Solving the Design Problem Using the P-Learning Algorithm
18.5 Concluding Remarks

References
References 512

19 MAINTAINING DESIGN CONSISTENCY: EXAMPLES 513

19.1 Wormgear Assembly Problem 514
 19.1.1 Dimensions - Wormgear Assembly 514
 19.1.2 Design Execution 514
19.2 Helical Compression Spring Problem 521
19.3 Other Design Areas 524
19.4 Point at A Distance from Two Points 528
19.5 Line Tangent to Two Circles 533
19.6 Helical Compression Spring (Continued) 539

Appendix A - Constraint Model of Wormgear 548

20 CASES IN EVOLUTIONARY DESIGN PROCESSES 551

20.1 Automobile Design Example 551
 20.1.1 The Specification and Design Description Properties 551
 20.1.2 The Production Rules 553
 20.1.3 Car Synthesis Using the Design Search Algorithm (see Chapter 10.3) 562
20.2 Forklift Design Example 564
 20.2.1 The Specification and Design Description Properties 565
 20.2.2 The Production Rules 568
 20.2.3 Forklift Truck Synthesis Using the Design Search Algorithm (see Chapter 10.3) 576
20.3 Computer Classroom Design Example 578
 20.3.1 The Specification and Design Description Properties 578
 20.3.2 The Production Rules 584
 20.3.3 Computer Classroom Synthesis Using the Design Search Algorithm (see Chapter 10.3) 601
20.4 Tire Design Example 604
 20.4.1 The Specification and Design Description Properties 606
 20.4.2 The Production Rules 608
 20.4.3 Tire Synthesis Using the Design Search Algorithm (see Chapter 10.3) 612
20.5 Fastener Design Example 614
 20.5.1 The Specification and Design Description Properties 614
 20.5.2 The Production Rules 615
 20.5.3 Fastener Synthesis Using the Design Search Algorithm (see Chapter 10.3) 620
20.6 Fastener Design Example (Continued) 621
 20.6.1 The Specification and Design Description Properties 621
 20.6.2 The Production Rules 624

Appendix A - Automobile Design 632
 A.1 Engines 632